The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques we...The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques were applied to identify the most important input parameters for mapping debris flow susceptibility in the southern mountain area of Chengde City in Hebei Province,China,by using machine learning algorithms.In total,133 historical debris flow records and 16 related factors were selected.The support vector machine(SVM)was first used as the base classifier,and then a hybrid model was introduced by a two-step process.First,the particle swarm optimization(PSO)algorithm was employed to select the SVM model hyperparameters.Second,two feature selection algorithms,namely principal component analysis(PCA)and PSO,were integrated into the PSO-based SVM model,which generated the PCA-PSO-SVM and FS-PSO-SVM models,respectively.Three statistical metrics(accuracy,recall,and specificity)and the area under the receiver operating characteristic curve(AUC)were employed to evaluate and validate the performance of the models.The results indicated that the feature selection-based models exhibited the best performance,followed by the PSO-based SVM and SVM models.Moreover,the performance of the FS-PSO-SVM model was better than that of the PCA-PSO-SVM model,showing the highest AUC,accuracy,recall,and specificity values in both the training and testing processes.It was found that the selection of optimal features is crucial to improving the reliability of debris flow susceptibility assessment results.Moreover,the PSO algorithm was found to be not only an effective tool for hyperparameter optimization,but also a useful feature selection algorithm to improve prediction accuracies of debris flow susceptibility by using machine learning algorithms.The high and very high debris flow susceptibility zone appropriately covers 38.01%of the study area,where debris flow may occur under intensive human activities and heavy rainfall events.展开更多
An approach which combines particle swarm optimization and support vector machine(PSO–SVM)is proposed to forecast large-scale goaf instability(LSGI).Firstly,influencing factors of goaf safety are analyzed,and followi...An approach which combines particle swarm optimization and support vector machine(PSO–SVM)is proposed to forecast large-scale goaf instability(LSGI).Firstly,influencing factors of goaf safety are analyzed,and following parameters were selected as evaluation indexes in the LSGI:uniaxial compressive strength(UCS)of rock,elastic modulus(E)of rock,rock quality designation(RQD),area ration of pillar(Sp),the ratio of width to height of the pillar(w/h),depth of ore body(H),volume of goaf(V),dip of ore body(a)and area of goaf(Sg).Then LSGI forecasting model by PSO-SVM was established according to the influencing factors.The performance of hybrid model(PSO+SVM=PSO–SVM)has been compared with the grid search method of support vector machine(GSM–SVM)model.The actual data of 40 goafs are applied to research the forecasting ability of the proposed method,and two cases of underground mine are also validated by the proposed model.The results indicated that the heuristic algorithm of PSO can speed up the SVM parameter optimization search,and the predictive ability of the PSO–SVM model with the RBF kernel function is acceptable and robust,which might hold a high potential to become a useful tool in goaf risky prediction research.展开更多
By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) for...By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) forecasting model, an improved SVM model named CPSO-SVM model was proposed. The new model was applied to predicting the short term load, and the improved effect of the new model was proved. The simulation results of the South China Power Market’s actual data show that the new method can effectively improve the forecast accuracy by 2.23% and 3.87%, respectively, compared with the PSO-SVM and SVM methods. Compared with that of the PSO-SVM and SVM methods, the time cost of the new model is only increased by 3.15 and 4.61 s, respectively, which indicates that the CPSO-SVM model gains significant improved effects.展开更多
A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, ...A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, the global searching capacity of the particle swarm optimization(SAPSO) was enchanced, and the searching capacity of the particle swarm optimization was studied. Then, the improyed particle swarm optimization algorithm was used to optimize the parameters of SVM (c,σ and ε). Based on the operational data provided by a regional power grid in north China, the method was used in the actual short term load forecasting. The results show that compared to the PSO-SVM and the traditional SVM, the average time of the proposed method in the experimental process reduces by 11.6 s and 31.1 s, and the precision of the proposed method increases by 1.24% and 3.18%, respectively. So, the improved method is better than the PSO-SVM and the traditional SVM.展开更多
The performance of the support vector machine models depends on a proper setting of its parameters to a great extent.A novel method of searching the optimal parameters of support vector machine based on chaos particle...The performance of the support vector machine models depends on a proper setting of its parameters to a great extent.A novel method of searching the optimal parameters of support vector machine based on chaos particle swarm optimization is proposed.A multi-fault classification model based on SVM optimized by chaos particle swarm optimization is established and applied to the fault diagnosis of rotating machines.The results show that the proposed fault classification model outperforms the neural network trained by chaos particle swarm optimization and least squares support vector machine,and the precision and reliability of the fault classification results can meet the requirement of practical application.It indicates that chaos particle swarm optimization is a suitable method for searching the optimal parameters of support vector machine.展开更多
In order to improve the firing efficiency of projectiles,it is required to use the universal firing table for gun weapon system equipped with a variety of projectiles.Moreover,the foundation of sharing the universal f...In order to improve the firing efficiency of projectiles,it is required to use the universal firing table for gun weapon system equipped with a variety of projectiles.Moreover,the foundation of sharing the universal firing table is the ballistic matching for two types of projectiles.Therefore,a method is proposed in the process of designing new type of projectile.The least squares support vector machine is utilized to build the ballistic trajectory model of the original projectile,thus it is viable to compare the two trajectories.Then the particle swarm optimization is applied to find the combination of trajectory parameters which meet the criterion of ballistic matching best.Finally,examples show the proposed method is valid and feasible.展开更多
This study explores the loss or degradation of the ecosystem and its service function in the Liaohe estuary coastal zone due to the deterioration ofwater quality.Aprediction systembased on support vectormachine(SVM)-p...This study explores the loss or degradation of the ecosystem and its service function in the Liaohe estuary coastal zone due to the deterioration ofwater quality.Aprediction systembased on support vectormachine(SVM)-particle swarm optimization(PSO)(SVM-PSO)algorithm is proposed under the background of deep learning.SVM-PSO algorithm is employed to analyze the pollution status of the Liaohe estuary,so is the difference in water pollution of different sea consuming types.Based on the analysis results for causes of pollution,the control countermeasures of water pollution in Liaohe estuary are put forward.The results suggest that the water pollution index prediction model based on SVM-PSO algorithm shows the maximum error of 2.41%,the average error of 1.24%in predicting the samples,the root mean square error(RMSE)of 5.36×10^(−4),and the square of correlation coefficient of 0.91.Therefore,the prediction system in this study is feasible.At present,the water pollution status of Liaohe estuary is of moderate and severe levels of eutrophication,and the water pollution status basically remains at the level of mild pollution.The general trend is fromphosphorus moderate restricted eutrophication to phosphorus restricted potential eutrophication.To sumup,the SVM-PSO algorithm shows good sewage prediction ability,which can be applied and promoted in water pollution control and has reliable reference significance.展开更多
A particle swarm optimization(PSO)-based least square support vector machine(LS-SVM)method was investigated for quantitative analysis of extraction solution of Y angxinshi tablet using near infrared(NIR)spectroscopy.T...A particle swarm optimization(PSO)-based least square support vector machine(LS-SVM)method was investigated for quantitative analysis of extraction solution of Y angxinshi tablet using near infrared(NIR)spectroscopy.The usable spectral region(5400-6200cm^(-1))was identified,then the first derivative spectra smoothed using a Savitzky-Golay filter were employed to establish calibration models.The PSO algorithm was applied to select the LS-SVM hyper-parameters(including the regularization and kernel parametens).The calibration models of total flavonoids,puerarin,salvianolic acid B and icarin were established using the optimumn hyper-parameters of LS SVM.The performance of LS SVM models were compared with partial least squares(PLS)regression,feed forward back propagation network(BPANN)and support vector machine(SVM).Experimental results showed that both the calibration results and prediction accuracy of the PSO-based LS SVM method were superior to PLS,BP-ANN and SVM.For PSO-based LS-SVM models,the determination cofficients(R2)for the calibration set were above 0.9881,and the RSEP values were controlled within 5.772%.For the validation set,the RMSEP values were close to RMSEC and less than 0.042,the RSEP values were under 8.778%,which were much lower than the PLS,BP-ANN and SVM models.The PSO-based LS SVM algorithm employed in this study exhibited excellent calibration performance and prediction accuracy,which has definite practice significance and application value.展开更多
With the continuous increase in the proportional use of wind energy across the globe,the reduction of power generation efficiency and safety hazards caused by the icing on wind turbine blades have attracted more consi...With the continuous increase in the proportional use of wind energy across the globe,the reduction of power generation efficiency and safety hazards caused by the icing on wind turbine blades have attracted more consideration for research.Therefore,it is crucial to accurately analyze the thickness of icing on wind turbine blades,which can serve as a basis for formulating corresponding control measures and ensure a safe and stable operation of wind turbines in winter times and/or in high altitude areas.This paper fully utilized the advantages of the support vector machine(SVM)and back-propagation neural network(BPNN),with the incorporation of particle swarm optimization(PSO)algorithms to optimize the parameters of the SVM.The paper proposes a hybrid assessment model of PSO-SVM and BPNN based on dynamic weighting rules.Three sets of icing data under a rotating working state of the wind turbine were used as examples for model verification.Based on a comparative analysis with other models,the results showed that the proposed model has better accuracy and stability in analyzing the icing on wind turbine blades.展开更多
Energy band gap of titanium dioxide(TiO_2) semiconductor plays significant roles in many practical applications of the semiconductor and determines its appropriateness in technological and industrial applications such...Energy band gap of titanium dioxide(TiO_2) semiconductor plays significant roles in many practical applications of the semiconductor and determines its appropriateness in technological and industrial applications such as UV absorption, pigment,photo-catalysis, pollution control systems and solar cells among others. Substitution of impurities into crystal lattice structure is the most commonly used method of tuning the band gap of TiO_2 for specific application and eventually leads to lattice distortion. This work utilizes the distortion in the lattice structure to estimate the band gap of doped TiO_2, for the first time, through hybridization of a particle swarm optimization algorithm(PSO) with a support vector regression(SVR) algorithm for developing a PSO-SVR model. The precision and accuracy of the developed PSO-SVR model was further justified by applying the model for estimating the effect of cobalt-sulfur co-doping, nickel-iodine co-doping, tungsten and indium doping on the band gap of TiO_2 and excellent agreement with the experimentally reported values was achieved. Practical implementation of the proposed PSO-SVR model would further widen the applications of the semiconductor and reduce the experimental stress involved in band gap determination of TiO_2.展开更多
In order to improve the recognition rate and accuracy rate of projectiles in six sky-screens intersection test system,this work proposes a new recognition method of projectiles by combining particle swarm optimization...In order to improve the recognition rate and accuracy rate of projectiles in six sky-screens intersection test system,this work proposes a new recognition method of projectiles by combining particle swarm optimization support vector and spatial-temporal constrain of six sky-screens detection sensor.Based on the measurement principle of the six sky-screens intersection test system and the characteristics of the output signal of the sky-screen,we analyze the existing problems regarding the recognition of projectiles.In order to optimize the projectile recognition effect,we use the support vector machine and basic particle swarm algorithm to form a new recognition algorithm.We set up the particle swarm algorithm optimization support vector projectile information recognition model that conforms to the six sky-screens intersection test system.We also construct a spatial-temporal constrain matching model based on the spatial geometric relationship of six sky-screen intersection,and form a new projectile signal recognition algorithm with six sky-screens spatial-temporal information constraints under the signal classification mechanism of particle swarm optimization algorithm support vector machine.Based on experiments,we obtain the optimal penalty and kernel function radius parameters in the PSO-SVM algorithm;we adjust the parameters of the support vector machine model,train the test signal data of every sky-screen,and gain the projectile signal classification results.Afterwards,according to the signal classification results,we calculate the coordinate parameters of the real projectile by using the spatial-temporal constrain of six sky-screens detection sensor,which verifies the feasibility of the proposed algorithm.展开更多
Support vector machine (SVM) is a popular pattern classification method with many application areas. SVM shows its outstanding performance in high-dimensional data classification. In the process of classification, SVM...Support vector machine (SVM) is a popular pattern classification method with many application areas. SVM shows its outstanding performance in high-dimensional data classification. In the process of classification, SVM kernel parameter setting during the SVM training procedure, along with the feature selection significantly influences the classification accuracy. This paper proposes two novel intelligent optimization methods, which simultaneously determines the parameter values while discovering a subset of features to increase SVM classification accuracy. The study focuses on two evolutionary computing approaches to optimize the parameters of SVM: particle swarm optimization (PSO) and genetic algorithm (GA). And we combine above the two intelligent optimization methods with SVM to choose appropriate subset features and SVM parameters, which are termed GA-FSSVM (Genetic Algorithm-Feature Selection Support Vector Machines) and PSO-FSSVM(Particle Swarm Optimization-Feature Selection Support Vector Machines) models. Experimental results demonstrate that the classification accuracy by our proposed methods outperforms traditional grid search approach and many other approaches. Moreover, the result indicates that PSO-FSSVM can obtain higher classification accuracy than GA-FSSVM classification for hyperspectral data.展开更多
An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from its...An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from itself and the best one but also from the mean value of some other particles.In addition,adaptive mutation was introduced to reduce the rate of premature convergence.The experimental results on the synthetic aperture radar(SAR) target recognition of moving and stationary target acquisition and recognition(MSTAR) dataset and character recognition of MNIST database show that the improved algorithm is feasible and effective for fuzzy multi-class SVM training.展开更多
Particle Swarm Optimization (PSO) is a popular and bionic algorithm based on the social behavior associated with bird flocking for optimization problems. To maintain the diversity of swarms, a few studies of multi-s...Particle Swarm Optimization (PSO) is a popular and bionic algorithm based on the social behavior associated with bird flocking for optimization problems. To maintain the diversity of swarms, a few studies of multi-swarm strategy have been reported. However, the competition among swarms, reservation or destruction of a swarm, has not been considered further. In this paper, we formulate four rules by introducing the mechanism for survival of the fittest, which simulates the competition among the swarms. Based on the mechanism, we design a modified Multi-Swarm PSO (MSPSO) to solve discrete problems, which consists of a number of sub-swarms and a multi-swarm scheduler that can monitor and control each sub-swarm using the rules. To further settle the feature selection problems, we propose an Improved Feature Selection (1FS) method by integrating MSPSO, Support Vector Machines (SVM) with F-score method. The IFS method aims to achieve higher generalization capa- bility through performing kernel parameter optimization and feature selection simultaneously. The performance of the proposed method is compared with that of the standard PSO based, Genetic Algorithm (GA) based and the grid search based mcthods on 10 benchmark datasets, taken from UCI machine learning and StatLog databases. The numerical results and statistical analysis show that the proposed IFS method performs significantly better than the other three methods in terms of prediction accuracy with smaller subset of features.展开更多
A relevance vector machine (RVM) based fault diagnosis method was presented for non-linear circuits. In order to simplify RVM classifier, parameters selection based on particle swarm optimization (PSO) and preprocessi...A relevance vector machine (RVM) based fault diagnosis method was presented for non-linear circuits. In order to simplify RVM classifier, parameters selection based on particle swarm optimization (PSO) and preprocessing technique based on the kurtosis and entropy of signals were used. Firstly, sinusoidal inputs with different frequencies were applied to the circuit under test (CUT). Then, the resulting frequency responses were sampled to generate features. The frequency response was sampled to compute its kurtosis and entropy, which can show the information capacity of signal. By analyzing the output signals, the proposed method can detect and identify faulty components in circuits. The results indicate that the fault classes can be classified correctly for at least 99% of the test data in example circuit. And the proposed method can diagnose hard and soft faults.展开更多
Proton Exchange Membrane Fuel Cells (PEMFCs) are the main focus of their current development as power sources because they are capable of higher power density and faster start-up than other fuel cells. The humidificat...Proton Exchange Membrane Fuel Cells (PEMFCs) are the main focus of their current development as power sources because they are capable of higher power density and faster start-up than other fuel cells. The humidification system and output performance of PEMFC stack are briefly analyzed. Predictive control of PEMFC based on Support Vector Regression Machine (SVRM) is presented and the SVRM is constructed. The processing plant is modelled on SVRM and the predictive control law is obtained by using Particle Swarm Optimization (PSO). The simulation and the results showed that the SVRM and the PSO re-ceding optimization applied to the PEMFC predictive control yielded good performance.展开更多
Deoxyribonucleic acid( DNA) microarray gene expression data has been widely utilized in the field of functional genomics,since it is helpful to study cancer,cells,tissues,organisms etc.But the sample sizes are relat...Deoxyribonucleic acid( DNA) microarray gene expression data has been widely utilized in the field of functional genomics,since it is helpful to study cancer,cells,tissues,organisms etc.But the sample sizes are relatively small compared to the number of genes,so feature selection is very necessary to reduce complexity and increase the classification accuracy of samples. In this paper,a completely newimprovement over particle swarm optimization( PSO) based on fluid mechanics is proposed for the feature selection. This newimprovement simulates the spontaneous process of the air from high pressure to lowpressure,therefore it allows for a search through all possible solution spaces and prevents particles from getting trapped in a local optimum. The experiment shows that,this newimproved algorithm had an elaborate feature simplification which achieved a very precise and significant accuracy in the classification of 8 among the 11 datasets,and it is much better in comparison with other methods for feature selection.展开更多
[Objective] The research aimed to study forecast models for frozen and melted dates of the river water in Ningxia-Inner Mongolia section of the Yellow River based on SVR optimized by particle swarm optimization algori...[Objective] The research aimed to study forecast models for frozen and melted dates of the river water in Ningxia-Inner Mongolia section of the Yellow River based on SVR optimized by particle swarm optimization algorithm. [Method] Correlation analysis and cause analysis were used to select suitable forecast factor combination of the ice regime. Particle swarm optimization algorithm was used to determine the optimal parameter to construct forecast model. The model was used to forecast frozen and melted dates of the river water in Ningxia-Inner Mongolia section of the Yellow River. [Result] The model had high prediction accuracy and short running time. Average forecast error was 3.51 d, and average running time was 10.464 s. Its forecast effect was better than that of the support vector regression optimized by genetic algorithm (GA) and back propagation type neural network (BPNN). It could accurately forecast frozen and melted dates of the river water. [Conclusion] SVR based on particle swarm optimization algorithm could be used for ice regime forecast.展开更多
Forecasting The Advertising investment risk of Sporting goods is very important which can provide the decision support for top manager. In this paper, we presented an optimized support vector machine (OSVM) to predi...Forecasting The Advertising investment risk of Sporting goods is very important which can provide the decision support for top manager. In this paper, we presented an optimized support vector machine (OSVM) to predict Advertising investment risk of Sporting goods. Experimental results show that the prediction accuracy improved by the proposed method.展开更多
Support vector machine has become an increasingly popular tool for machine learning tasks involving classification, regression or novelty detection. Training a support vector machine requires the solution of a very la...Support vector machine has become an increasingly popular tool for machine learning tasks involving classification, regression or novelty detection. Training a support vector machine requires the solution of a very large quadratic programming problem. Traditional optimization methods cannot be directly applied due to memory restrictions. Up to now, several approaches exist for circumventing the above shortcomings and work well. Another learning algorithm, particle swarm optimization, for training SVM is introduted. The method is tested on UCI datasets.展开更多
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(Grant no.2019QZKK0904)Natural Science Foundation of Hebei Province(Grant no.D2022403032)S&T Program of Hebei(Grant no.E2021403001).
文摘The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques were applied to identify the most important input parameters for mapping debris flow susceptibility in the southern mountain area of Chengde City in Hebei Province,China,by using machine learning algorithms.In total,133 historical debris flow records and 16 related factors were selected.The support vector machine(SVM)was first used as the base classifier,and then a hybrid model was introduced by a two-step process.First,the particle swarm optimization(PSO)algorithm was employed to select the SVM model hyperparameters.Second,two feature selection algorithms,namely principal component analysis(PCA)and PSO,were integrated into the PSO-based SVM model,which generated the PCA-PSO-SVM and FS-PSO-SVM models,respectively.Three statistical metrics(accuracy,recall,and specificity)and the area under the receiver operating characteristic curve(AUC)were employed to evaluate and validate the performance of the models.The results indicated that the feature selection-based models exhibited the best performance,followed by the PSO-based SVM and SVM models.Moreover,the performance of the FS-PSO-SVM model was better than that of the PCA-PSO-SVM model,showing the highest AUC,accuracy,recall,and specificity values in both the training and testing processes.It was found that the selection of optimal features is crucial to improving the reliability of debris flow susceptibility assessment results.Moreover,the PSO algorithm was found to be not only an effective tool for hyperparameter optimization,but also a useful feature selection algorithm to improve prediction accuracies of debris flow susceptibility by using machine learning algorithms.The high and very high debris flow susceptibility zone appropriately covers 38.01%of the study area,where debris flow may occur under intensive human activities and heavy rainfall events.
基金supported by the National Basic Research Program Project of China(No.2010CB732004)the National Natural Science Foundation Project of China(Nos.50934006 and41272304)+2 种基金the Graduated Students’ResearchInnovation Fund Project of Hunan Province of China(No.CX2011B119)the Scholarship Award for Excellent Doctoral Student of Ministry of Education of China and the Valuable Equipment Open Sharing Fund of Central South University(No.1343-76140000022)
文摘An approach which combines particle swarm optimization and support vector machine(PSO–SVM)is proposed to forecast large-scale goaf instability(LSGI).Firstly,influencing factors of goaf safety are analyzed,and following parameters were selected as evaluation indexes in the LSGI:uniaxial compressive strength(UCS)of rock,elastic modulus(E)of rock,rock quality designation(RQD),area ration of pillar(Sp),the ratio of width to height of the pillar(w/h),depth of ore body(H),volume of goaf(V),dip of ore body(a)and area of goaf(Sg).Then LSGI forecasting model by PSO-SVM was established according to the influencing factors.The performance of hybrid model(PSO+SVM=PSO–SVM)has been compared with the grid search method of support vector machine(GSM–SVM)model.The actual data of 40 goafs are applied to research the forecasting ability of the proposed method,and two cases of underground mine are also validated by the proposed model.The results indicated that the heuristic algorithm of PSO can speed up the SVM parameter optimization search,and the predictive ability of the PSO–SVM model with the RBF kernel function is acceptable and robust,which might hold a high potential to become a useful tool in goaf risky prediction research.
基金Project(70572090) supported by the National Natural Science Foundation of China
文摘By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) forecasting model, an improved SVM model named CPSO-SVM model was proposed. The new model was applied to predicting the short term load, and the improved effect of the new model was proved. The simulation results of the South China Power Market’s actual data show that the new method can effectively improve the forecast accuracy by 2.23% and 3.87%, respectively, compared with the PSO-SVM and SVM methods. Compared with that of the PSO-SVM and SVM methods, the time cost of the new model is only increased by 3.15 and 4.61 s, respectively, which indicates that the CPSO-SVM model gains significant improved effects.
基金Project(50579101) supported by the National Natural Science Foundation of China
文摘A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, the global searching capacity of the particle swarm optimization(SAPSO) was enchanced, and the searching capacity of the particle swarm optimization was studied. Then, the improyed particle swarm optimization algorithm was used to optimize the parameters of SVM (c,σ and ε). Based on the operational data provided by a regional power grid in north China, the method was used in the actual short term load forecasting. The results show that compared to the PSO-SVM and the traditional SVM, the average time of the proposed method in the experimental process reduces by 11.6 s and 31.1 s, and the precision of the proposed method increases by 1.24% and 3.18%, respectively. So, the improved method is better than the PSO-SVM and the traditional SVM.
基金supported by the National Nature Science Foundation of China under Grant 60506055
文摘The performance of the support vector machine models depends on a proper setting of its parameters to a great extent.A novel method of searching the optimal parameters of support vector machine based on chaos particle swarm optimization is proposed.A multi-fault classification model based on SVM optimized by chaos particle swarm optimization is established and applied to the fault diagnosis of rotating machines.The results show that the proposed fault classification model outperforms the neural network trained by chaos particle swarm optimization and least squares support vector machine,and the precision and reliability of the fault classification results can meet the requirement of practical application.It indicates that chaos particle swarm optimization is a suitable method for searching the optimal parameters of support vector machine.
基金supported by the National Natural Science Foundation of China(No.51006052)
文摘In order to improve the firing efficiency of projectiles,it is required to use the universal firing table for gun weapon system equipped with a variety of projectiles.Moreover,the foundation of sharing the universal firing table is the ballistic matching for two types of projectiles.Therefore,a method is proposed in the process of designing new type of projectile.The least squares support vector machine is utilized to build the ballistic trajectory model of the original projectile,thus it is viable to compare the two trajectories.Then the particle swarm optimization is applied to find the combination of trajectory parameters which meet the criterion of ballistic matching best.Finally,examples show the proposed method is valid and feasible.
基金National Key R&D Program of China(2019YFC1407700)National Natural Science Foundation of China(Grant 41606141)Study on the mechanisms of macrobenthos responses to oil spill based on MINE method.
文摘This study explores the loss or degradation of the ecosystem and its service function in the Liaohe estuary coastal zone due to the deterioration ofwater quality.Aprediction systembased on support vectormachine(SVM)-particle swarm optimization(PSO)(SVM-PSO)algorithm is proposed under the background of deep learning.SVM-PSO algorithm is employed to analyze the pollution status of the Liaohe estuary,so is the difference in water pollution of different sea consuming types.Based on the analysis results for causes of pollution,the control countermeasures of water pollution in Liaohe estuary are put forward.The results suggest that the water pollution index prediction model based on SVM-PSO algorithm shows the maximum error of 2.41%,the average error of 1.24%in predicting the samples,the root mean square error(RMSE)of 5.36×10^(−4),and the square of correlation coefficient of 0.91.Therefore,the prediction system in this study is feasible.At present,the water pollution status of Liaohe estuary is of moderate and severe levels of eutrophication,and the water pollution status basically remains at the level of mild pollution.The general trend is fromphosphorus moderate restricted eutrophication to phosphorus restricted potential eutrophication.To sumup,the SVM-PSO algorithm shows good sewage prediction ability,which can be applied and promoted in water pollution control and has reliable reference significance.
文摘A particle swarm optimization(PSO)-based least square support vector machine(LS-SVM)method was investigated for quantitative analysis of extraction solution of Y angxinshi tablet using near infrared(NIR)spectroscopy.The usable spectral region(5400-6200cm^(-1))was identified,then the first derivative spectra smoothed using a Savitzky-Golay filter were employed to establish calibration models.The PSO algorithm was applied to select the LS-SVM hyper-parameters(including the regularization and kernel parametens).The calibration models of total flavonoids,puerarin,salvianolic acid B and icarin were established using the optimumn hyper-parameters of LS SVM.The performance of LS SVM models were compared with partial least squares(PLS)regression,feed forward back propagation network(BPANN)and support vector machine(SVM).Experimental results showed that both the calibration results and prediction accuracy of the PSO-based LS SVM method were superior to PLS,BP-ANN and SVM.For PSO-based LS-SVM models,the determination cofficients(R2)for the calibration set were above 0.9881,and the RSEP values were controlled within 5.772%.For the validation set,the RMSEP values were close to RMSEC and less than 0.042,the RSEP values were under 8.778%,which were much lower than the PLS,BP-ANN and SVM models.The PSO-based LS SVM algorithm employed in this study exhibited excellent calibration performance and prediction accuracy,which has definite practice significance and application value.
基金supported by the Natural Science Foundation of China(Project No.51665052).
文摘With the continuous increase in the proportional use of wind energy across the globe,the reduction of power generation efficiency and safety hazards caused by the icing on wind turbine blades have attracted more consideration for research.Therefore,it is crucial to accurately analyze the thickness of icing on wind turbine blades,which can serve as a basis for formulating corresponding control measures and ensure a safe and stable operation of wind turbines in winter times and/or in high altitude areas.This paper fully utilized the advantages of the support vector machine(SVM)and back-propagation neural network(BPNN),with the incorporation of particle swarm optimization(PSO)algorithms to optimize the parameters of the SVM.The paper proposes a hybrid assessment model of PSO-SVM and BPNN based on dynamic weighting rules.Three sets of icing data under a rotating working state of the wind turbine were used as examples for model verification.Based on a comparative analysis with other models,the results showed that the proposed model has better accuracy and stability in analyzing the icing on wind turbine blades.
基金The support of King Fahd University of Petroleum and Minerals
文摘Energy band gap of titanium dioxide(TiO_2) semiconductor plays significant roles in many practical applications of the semiconductor and determines its appropriateness in technological and industrial applications such as UV absorption, pigment,photo-catalysis, pollution control systems and solar cells among others. Substitution of impurities into crystal lattice structure is the most commonly used method of tuning the band gap of TiO_2 for specific application and eventually leads to lattice distortion. This work utilizes the distortion in the lattice structure to estimate the band gap of doped TiO_2, for the first time, through hybridization of a particle swarm optimization algorithm(PSO) with a support vector regression(SVR) algorithm for developing a PSO-SVR model. The precision and accuracy of the developed PSO-SVR model was further justified by applying the model for estimating the effect of cobalt-sulfur co-doping, nickel-iodine co-doping, tungsten and indium doping on the band gap of TiO_2 and excellent agreement with the experimentally reported values was achieved. Practical implementation of the proposed PSO-SVR model would further widen the applications of the semiconductor and reduce the experimental stress involved in band gap determination of TiO_2.
基金supported by Project of the National Natural Science Foundation of China(Grant No.62073256)in part by Shaanxi Provincial Science and Technology Department(Grant No.2020GY-125)。
文摘In order to improve the recognition rate and accuracy rate of projectiles in six sky-screens intersection test system,this work proposes a new recognition method of projectiles by combining particle swarm optimization support vector and spatial-temporal constrain of six sky-screens detection sensor.Based on the measurement principle of the six sky-screens intersection test system and the characteristics of the output signal of the sky-screen,we analyze the existing problems regarding the recognition of projectiles.In order to optimize the projectile recognition effect,we use the support vector machine and basic particle swarm algorithm to form a new recognition algorithm.We set up the particle swarm algorithm optimization support vector projectile information recognition model that conforms to the six sky-screens intersection test system.We also construct a spatial-temporal constrain matching model based on the spatial geometric relationship of six sky-screen intersection,and form a new projectile signal recognition algorithm with six sky-screens spatial-temporal information constraints under the signal classification mechanism of particle swarm optimization algorithm support vector machine.Based on experiments,we obtain the optimal penalty and kernel function radius parameters in the PSO-SVM algorithm;we adjust the parameters of the support vector machine model,train the test signal data of every sky-screen,and gain the projectile signal classification results.Afterwards,according to the signal classification results,we calculate the coordinate parameters of the real projectile by using the spatial-temporal constrain of six sky-screens detection sensor,which verifies the feasibility of the proposed algorithm.
文摘Support vector machine (SVM) is a popular pattern classification method with many application areas. SVM shows its outstanding performance in high-dimensional data classification. In the process of classification, SVM kernel parameter setting during the SVM training procedure, along with the feature selection significantly influences the classification accuracy. This paper proposes two novel intelligent optimization methods, which simultaneously determines the parameter values while discovering a subset of features to increase SVM classification accuracy. The study focuses on two evolutionary computing approaches to optimize the parameters of SVM: particle swarm optimization (PSO) and genetic algorithm (GA). And we combine above the two intelligent optimization methods with SVM to choose appropriate subset features and SVM parameters, which are termed GA-FSSVM (Genetic Algorithm-Feature Selection Support Vector Machines) and PSO-FSSVM(Particle Swarm Optimization-Feature Selection Support Vector Machines) models. Experimental results demonstrate that the classification accuracy by our proposed methods outperforms traditional grid search approach and many other approaches. Moreover, the result indicates that PSO-FSSVM can obtain higher classification accuracy than GA-FSSVM classification for hyperspectral data.
基金supported by the National Natural Science Foundation of China (60873086)the Aeronautical Science Foundation of China(20085153013)the Fundamental Research Found of Northwestern Polytechnical Unirersity (JC200942)
文摘An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from itself and the best one but also from the mean value of some other particles.In addition,adaptive mutation was introduced to reduce the rate of premature convergence.The experimental results on the synthetic aperture radar(SAR) target recognition of moving and stationary target acquisition and recognition(MSTAR) dataset and character recognition of MNIST database show that the improved algorithm is feasible and effective for fuzzy multi-class SVM training.
基金Acknowledgments This work was supported by National Natural Science Foundation of China (Grant no. 60971089), National Electronic Development Foundation of China (Grant no. 2009537), Jilin Province Science and Tech- nology Department Project of China (Grant no. 20090502).
文摘Particle Swarm Optimization (PSO) is a popular and bionic algorithm based on the social behavior associated with bird flocking for optimization problems. To maintain the diversity of swarms, a few studies of multi-swarm strategy have been reported. However, the competition among swarms, reservation or destruction of a swarm, has not been considered further. In this paper, we formulate four rules by introducing the mechanism for survival of the fittest, which simulates the competition among the swarms. Based on the mechanism, we design a modified Multi-Swarm PSO (MSPSO) to solve discrete problems, which consists of a number of sub-swarms and a multi-swarm scheduler that can monitor and control each sub-swarm using the rules. To further settle the feature selection problems, we propose an Improved Feature Selection (1FS) method by integrating MSPSO, Support Vector Machines (SVM) with F-score method. The IFS method aims to achieve higher generalization capa- bility through performing kernel parameter optimization and feature selection simultaneously. The performance of the proposed method is compared with that of the standard PSO based, Genetic Algorithm (GA) based and the grid search based mcthods on 10 benchmark datasets, taken from UCI machine learning and StatLog databases. The numerical results and statistical analysis show that the proposed IFS method performs significantly better than the other three methods in terms of prediction accuracy with smaller subset of features.
基金Project(Z132012)supported by the Second Five Technology-based in Science and Industry Bureau of ChinaProject(YWF1103Q062)supported by the Fundemental Research Funds for the Central Universities in China
文摘A relevance vector machine (RVM) based fault diagnosis method was presented for non-linear circuits. In order to simplify RVM classifier, parameters selection based on particle swarm optimization (PSO) and preprocessing technique based on the kurtosis and entropy of signals were used. Firstly, sinusoidal inputs with different frequencies were applied to the circuit under test (CUT). Then, the resulting frequency responses were sampled to generate features. The frequency response was sampled to compute its kurtosis and entropy, which can show the information capacity of signal. By analyzing the output signals, the proposed method can detect and identify faulty components in circuits. The results indicate that the fault classes can be classified correctly for at least 99% of the test data in example circuit. And the proposed method can diagnose hard and soft faults.
基金Project (No. 2003AA517020) supported by the Hi-Tech Researchand Development Program (863) of China
文摘Proton Exchange Membrane Fuel Cells (PEMFCs) are the main focus of their current development as power sources because they are capable of higher power density and faster start-up than other fuel cells. The humidification system and output performance of PEMFC stack are briefly analyzed. Predictive control of PEMFC based on Support Vector Regression Machine (SVRM) is presented and the SVRM is constructed. The processing plant is modelled on SVRM and the predictive control law is obtained by using Particle Swarm Optimization (PSO). The simulation and the results showed that the SVRM and the PSO re-ceding optimization applied to the PEMFC predictive control yielded good performance.
基金Supported by the National Natural Science Foundation of China(61472161,61402195,61502198)
文摘Deoxyribonucleic acid( DNA) microarray gene expression data has been widely utilized in the field of functional genomics,since it is helpful to study cancer,cells,tissues,organisms etc.But the sample sizes are relatively small compared to the number of genes,so feature selection is very necessary to reduce complexity and increase the classification accuracy of samples. In this paper,a completely newimprovement over particle swarm optimization( PSO) based on fluid mechanics is proposed for the feature selection. This newimprovement simulates the spontaneous process of the air from high pressure to lowpressure,therefore it allows for a search through all possible solution spaces and prevents particles from getting trapped in a local optimum. The experiment shows that,this newimproved algorithm had an elaborate feature simplification which achieved a very precise and significant accuracy in the classification of 8 among the 11 datasets,and it is much better in comparison with other methods for feature selection.
基金Supported by National Nature Science Fund Item,China (51009065)Key Science and Technology Research Plan Program in Henan Province,China(112102110033)
文摘[Objective] The research aimed to study forecast models for frozen and melted dates of the river water in Ningxia-Inner Mongolia section of the Yellow River based on SVR optimized by particle swarm optimization algorithm. [Method] Correlation analysis and cause analysis were used to select suitable forecast factor combination of the ice regime. Particle swarm optimization algorithm was used to determine the optimal parameter to construct forecast model. The model was used to forecast frozen and melted dates of the river water in Ningxia-Inner Mongolia section of the Yellow River. [Result] The model had high prediction accuracy and short running time. Average forecast error was 3.51 d, and average running time was 10.464 s. Its forecast effect was better than that of the support vector regression optimized by genetic algorithm (GA) and back propagation type neural network (BPNN). It could accurately forecast frozen and melted dates of the river water. [Conclusion] SVR based on particle swarm optimization algorithm could be used for ice regime forecast.
文摘Forecasting The Advertising investment risk of Sporting goods is very important which can provide the decision support for top manager. In this paper, we presented an optimized support vector machine (OSVM) to predict Advertising investment risk of Sporting goods. Experimental results show that the prediction accuracy improved by the proposed method.
文摘Support vector machine has become an increasingly popular tool for machine learning tasks involving classification, regression or novelty detection. Training a support vector machine requires the solution of a very large quadratic programming problem. Traditional optimization methods cannot be directly applied due to memory restrictions. Up to now, several approaches exist for circumventing the above shortcomings and work well. Another learning algorithm, particle swarm optimization, for training SVM is introduted. The method is tested on UCI datasets.