Deficiencies of applying the traditional least squares support vector machine (LS-SVM) to time series online prediction were specified. According to the kernel function matrix's property and using the recursive cal...Deficiencies of applying the traditional least squares support vector machine (LS-SVM) to time series online prediction were specified. According to the kernel function matrix's property and using the recursive calculation of block matrix, a new time series online prediction algorithm based on improved LS-SVM was proposed. The historical training results were fully utilized and the computing speed of LS-SVM was enhanced. Then, the improved algorithm was applied to timc series online prediction. Based on the operational data provided by the Northwest Power Grid of China, the method was used in the transient stability prediction of electric power system. The results show that, compared with the calculation time of the traditional LS-SVM(75 1 600 ms), that of the proposed method in different time windows is 40-60 ms, proposed method is above 0.8. So the improved method is online prediction. and the prediction accuracy(normalized root mean squared error) of the better than the traditional LS-SVM and more suitable for time series online prediction.展开更多
The basic principles of the Support Vector Machine (SVM) are introduced in this paper. A specific process to establish an SVM prediction model is given. To improve the precision of coal reserve estimation, a support v...The basic principles of the Support Vector Machine (SVM) are introduced in this paper. A specific process to establish an SVM prediction model is given. To improve the precision of coal reserve estimation, a support vector machine method, based on statistical learning theory, is put forward. The SVM model was trained and tested by using the existing exploration and exploitation data of Chencun mine of Yima bureau’s as the input data. Then coal reserves within a particular region were calculated. These calculated results and the actual results of the exploration block were compared. The maximum relative error was 10.85%, within the scope of acceptable error limits. The results show that the SVM coal reserve calculation method is reliable. This method is simple, practical and valuable.展开更多
Statistical learning theory is for small-sample statistics. And support vector machine is a new machine learning method based on the statistical learning theory. The support vector machine not only has solved certain ...Statistical learning theory is for small-sample statistics. And support vector machine is a new machine learning method based on the statistical learning theory. The support vector machine not only has solved certain problems in many learning methods, such as small sample, over fitting, high dimension and local minimum, but also has a higher generalization (forecasting) ability than that of artificial neural networks. The strong earthquakes in Chinese mainland are related to a certain extent to the intensive seismicity along the main plate boundaries in the world, however, the relation is nonlinear. In the paper, we have studied this unclear relation by the support vector machine method for the purpose of forecasting strong earthquakes in Chinese mainland.展开更多
This paper provides an introduction to a support vector machine, a new kernel-based technique introduced in statistical learning theory and structural risk minimization, then presents a modeling-control framework base...This paper provides an introduction to a support vector machine, a new kernel-based technique introduced in statistical learning theory and structural risk minimization, then presents a modeling-control framework based on SVM. At last a numerical experiment is taken to demonstrate the proposed approach's correctness and effectiveness.展开更多
A multi-layer adaptive optimizing parameters algorithm is developed forimproving least squares support vector machines (LS-SVM) , and a military aircraft life-cycle-cost(LCC) intelligent estimation model is proposed b...A multi-layer adaptive optimizing parameters algorithm is developed forimproving least squares support vector machines (LS-SVM) , and a military aircraft life-cycle-cost(LCC) intelligent estimation model is proposed based on the improved LS-SVM. The intelligent costestimation process is divided into three steps in the model. In the first step, a cost-drive-factorneeds to be selected, which is significant for cost estimation. In the second step, militaryaircraft training samples within costs and cost-drive-factor set are obtained by the LS-SVM. Thenthe model can be used for new type aircraft cost estimation. Chinese military aircraft costs areestimated in the paper. The results show that the estimated costs by the new model are closer to thetrue costs than that of the traditionally used methods.展开更多
SVM handles classification problem only considering samples themselves and the classification effect depends on the characteristics of the training samples but not the current information of classified problem.From th...SVM handles classification problem only considering samples themselves and the classification effect depends on the characteristics of the training samples but not the current information of classified problem.From the phenomena of data crossing in systems,this paper improves the classification effect of SVM by adding the prior probability item reflecting the classified problem information into the decision function,which fuses the Bayesian criterion into SVM.The detailed deducing process and realizing steps of the algorithm are put forward.It is verified through two instances.The results showthat the new algorithm has better effect than the traditional SVM algorithm,and its robustness and sensitivity are all improved.展开更多
Solar radiation is an important parameter in the fields of computer modeling,engineering technology and energy development.This paper evaluated the ability of three machine learning models,i.e.,Extreme Gradient Boosti...Solar radiation is an important parameter in the fields of computer modeling,engineering technology and energy development.This paper evaluated the ability of three machine learning models,i.e.,Extreme Gradient Boosting(XGBoost),Support Vector Machine(SVM)and Multivariate Adaptive Regression Splines(MARS),to estimate the daily diffuse solar radiation(Rd).The regular meteorological data of 1966-2015 at five stations in China were taken as the input parameters(including mean average temperature(Ta),theoretical sunshine duration(N),actual sunshine duration(n),daily average air relative humidity(RH),and extra-terrestrial solar radiation(Ra)).And their estimation accuracies were subjected to comparative analysis.The three models were first trained using meteorological data from 1966 to 2000.Then,the 2001-2015 data was used to test the trained machine learning model.The results show that the XGBoost had better accuracy than the other two models in coefficient of determination(R2),root mean square error(RMSE),mean bias error(MBE)and normalized root mean square error(NRMSE).The MARS performed better in the training phase than the testing phase,but became less accurate in the testing phase,with the R2 value falling by 2.7-16.9%on average.By contrast,the R2 values of SVM and XGBoost increased by 2.9-12.2%and 1.9-14.3%,respectively.Despite trailing slightly behind the SVM at the Beijing station,the XGBoost showed good performance at the rest of the stations in the two phases.In the training phase,the accuracy growth is small but observable.In addition,the XGBoost had a slightly lower RMSE than the SVM,a signal of its edge in stability.Therefore,the three machine learning models can estimate the daily Rd based on local inputs and the XGBoost stands out for its excellent performance and stability.展开更多
Gyro's fault diagnosis plays a critical role in inertia navigation systems for higher reliability and precision. A new fault diagnosis strategy based on the statistical parameter analysis (SPA) and support vector ...Gyro's fault diagnosis plays a critical role in inertia navigation systems for higher reliability and precision. A new fault diagnosis strategy based on the statistical parameter analysis (SPA) and support vector machine (SVM) classification model was proposed for dynamically tuned gyroscopes (DTG). The SPA, a kind of time domain analysis approach, was introduced to compute a set of statistical parameters of vibration signal as the state features of DTG, with which the SVM model, a novel learning machine based on statistical learning theory (SLT), was applied and constructed to train and identify the working state of DTG. The experimental results verify that the proposed diagnostic strategy can simply and effectively extract the state features of DTG, and it outperforms the radial-basis function (RBF) neural network based diagnostic method and can more reliably and accurately diagnose the working state of DTG.展开更多
Compared with the histogram of Discrete Cosine Transform (DCT) coefficients before the Direct Sequence Spread Spectrum (DSSS) embedding, the peak value of the histogram after the embedding decreases and expands toward...Compared with the histogram of Discrete Cosine Transform (DCT) coefficients before the Direct Sequence Spread Spectrum (DSSS) embedding, the peak value of the histogram after the embedding decreases and expands toward the border. Based on the property, an audio steganalysis of DSSS based on statistical moments of histogram is proposed. The statistical moments of the histogram in DCT domain and its frequency domain and the statistical moments of the histogram of the wavelet coefficients of every level in frequency domain are calculated as the features of classification. Support Vector Machine (SVM) is exploited as the classifier. Experimental results show that the proposed technique is effective on the DSSS embedding in DCT domain using different embedding length, and the average detection rate is 91.75%.展开更多
基金Project (SGKJ[200301-16]) supported by the State Grid Cooperation of China
文摘Deficiencies of applying the traditional least squares support vector machine (LS-SVM) to time series online prediction were specified. According to the kernel function matrix's property and using the recursive calculation of block matrix, a new time series online prediction algorithm based on improved LS-SVM was proposed. The historical training results were fully utilized and the computing speed of LS-SVM was enhanced. Then, the improved algorithm was applied to timc series online prediction. Based on the operational data provided by the Northwest Power Grid of China, the method was used in the transient stability prediction of electric power system. The results show that, compared with the calculation time of the traditional LS-SVM(75 1 600 ms), that of the proposed method in different time windows is 40-60 ms, proposed method is above 0.8. So the improved method is online prediction. and the prediction accuracy(normalized root mean squared error) of the better than the traditional LS-SVM and more suitable for time series online prediction.
基金Project 072400430420 supported by the Natural Science Foundation of Henan Province
文摘The basic principles of the Support Vector Machine (SVM) are introduced in this paper. A specific process to establish an SVM prediction model is given. To improve the precision of coal reserve estimation, a support vector machine method, based on statistical learning theory, is put forward. The SVM model was trained and tested by using the existing exploration and exploitation data of Chencun mine of Yima bureau’s as the input data. Then coal reserves within a particular region were calculated. These calculated results and the actual results of the exploration block were compared. The maximum relative error was 10.85%, within the scope of acceptable error limits. The results show that the SVM coal reserve calculation method is reliable. This method is simple, practical and valuable.
基金Joint Seismological Science Foundation of China (104090)
文摘Statistical learning theory is for small-sample statistics. And support vector machine is a new machine learning method based on the statistical learning theory. The support vector machine not only has solved certain problems in many learning methods, such as small sample, over fitting, high dimension and local minimum, but also has a higher generalization (forecasting) ability than that of artificial neural networks. The strong earthquakes in Chinese mainland are related to a certain extent to the intensive seismicity along the main plate boundaries in the world, however, the relation is nonlinear. In the paper, we have studied this unclear relation by the support vector machine method for the purpose of forecasting strong earthquakes in Chinese mainland.
文摘This paper provides an introduction to a support vector machine, a new kernel-based technique introduced in statistical learning theory and structural risk minimization, then presents a modeling-control framework based on SVM. At last a numerical experiment is taken to demonstrate the proposed approach's correctness and effectiveness.
文摘A multi-layer adaptive optimizing parameters algorithm is developed forimproving least squares support vector machines (LS-SVM) , and a military aircraft life-cycle-cost(LCC) intelligent estimation model is proposed based on the improved LS-SVM. The intelligent costestimation process is divided into three steps in the model. In the first step, a cost-drive-factorneeds to be selected, which is significant for cost estimation. In the second step, militaryaircraft training samples within costs and cost-drive-factor set are obtained by the LS-SVM. Thenthe model can be used for new type aircraft cost estimation. Chinese military aircraft costs areestimated in the paper. The results show that the estimated costs by the new model are closer to thetrue costs than that of the traditionally used methods.
文摘SVM handles classification problem only considering samples themselves and the classification effect depends on the characteristics of the training samples but not the current information of classified problem.From the phenomena of data crossing in systems,this paper improves the classification effect of SVM by adding the prior probability item reflecting the classified problem information into the decision function,which fuses the Bayesian criterion into SVM.The detailed deducing process and realizing steps of the algorithm are put forward.It is verified through two instances.The results showthat the new algorithm has better effect than the traditional SVM algorithm,and its robustness and sensitivity are all improved.
基金supported by National Natural Science Foundation of China(51769010,51979133,51469010 and 51109102).
文摘Solar radiation is an important parameter in the fields of computer modeling,engineering technology and energy development.This paper evaluated the ability of three machine learning models,i.e.,Extreme Gradient Boosting(XGBoost),Support Vector Machine(SVM)and Multivariate Adaptive Regression Splines(MARS),to estimate the daily diffuse solar radiation(Rd).The regular meteorological data of 1966-2015 at five stations in China were taken as the input parameters(including mean average temperature(Ta),theoretical sunshine duration(N),actual sunshine duration(n),daily average air relative humidity(RH),and extra-terrestrial solar radiation(Ra)).And their estimation accuracies were subjected to comparative analysis.The three models were first trained using meteorological data from 1966 to 2000.Then,the 2001-2015 data was used to test the trained machine learning model.The results show that the XGBoost had better accuracy than the other two models in coefficient of determination(R2),root mean square error(RMSE),mean bias error(MBE)and normalized root mean square error(NRMSE).The MARS performed better in the training phase than the testing phase,but became less accurate in the testing phase,with the R2 value falling by 2.7-16.9%on average.By contrast,the R2 values of SVM and XGBoost increased by 2.9-12.2%and 1.9-14.3%,respectively.Despite trailing slightly behind the SVM at the Beijing station,the XGBoost showed good performance at the rest of the stations in the two phases.In the training phase,the accuracy growth is small but observable.In addition,the XGBoost had a slightly lower RMSE than the SVM,a signal of its edge in stability.Therefore,the three machine learning models can estimate the daily Rd based on local inputs and the XGBoost stands out for its excellent performance and stability.
文摘Gyro's fault diagnosis plays a critical role in inertia navigation systems for higher reliability and precision. A new fault diagnosis strategy based on the statistical parameter analysis (SPA) and support vector machine (SVM) classification model was proposed for dynamically tuned gyroscopes (DTG). The SPA, a kind of time domain analysis approach, was introduced to compute a set of statistical parameters of vibration signal as the state features of DTG, with which the SVM model, a novel learning machine based on statistical learning theory (SLT), was applied and constructed to train and identify the working state of DTG. The experimental results verify that the proposed diagnostic strategy can simply and effectively extract the state features of DTG, and it outperforms the radial-basis function (RBF) neural network based diagnostic method and can more reliably and accurately diagnose the working state of DTG.
基金Supported by the National Natural Science Foundation of China (No.60772032)
文摘Compared with the histogram of Discrete Cosine Transform (DCT) coefficients before the Direct Sequence Spread Spectrum (DSSS) embedding, the peak value of the histogram after the embedding decreases and expands toward the border. Based on the property, an audio steganalysis of DSSS based on statistical moments of histogram is proposed. The statistical moments of the histogram in DCT domain and its frequency domain and the statistical moments of the histogram of the wavelet coefficients of every level in frequency domain are calculated as the features of classification. Support Vector Machine (SVM) is exploited as the classifier. Experimental results show that the proposed technique is effective on the DSSS embedding in DCT domain using different embedding length, and the average detection rate is 91.75%.