期刊文献+
共找到4,089篇文章
< 1 2 205 >
每页显示 20 50 100
Prediction of Ground Vibration Induced by Rock Blasting Based on Optimized Support Vector Regression Models
1
作者 Yifan Huang Zikang Zhou +1 位作者 Mingyu Li Xuedong Luo 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3147-3165,共19页
Accurately estimating blasting vibration during rock blasting is the foundation of blasting vibration management.In this study,Tuna Swarm Optimization(TSO),Whale Optimization Algorithm(WOA),and Cuckoo Search(CS)were u... Accurately estimating blasting vibration during rock blasting is the foundation of blasting vibration management.In this study,Tuna Swarm Optimization(TSO),Whale Optimization Algorithm(WOA),and Cuckoo Search(CS)were used to optimize two hyperparameters in support vector regression(SVR).Based on these methods,three hybrid models to predict peak particle velocity(PPV)for bench blasting were developed.Eighty-eight samples were collected to establish the PPV database,eight initial blasting parameters were chosen as input parameters for the predictionmodel,and the PPV was the output parameter.As predictive performance evaluation indicators,the coefficient of determination(R2),rootmean square error(RMSE),mean absolute error(MAE),and a10-index were selected.The normalizedmutual information value is then used to evaluate the impact of various input parameters on the PPV prediction outcomes.According to the research findings,TSO,WOA,and CS can all enhance the predictive performance of the SVR model.The TSO-SVR model provides the most accurate predictions.The performances of the optimized hybrid SVR models are superior to the unoptimized traditional prediction model.The maximum charge per delay impacts the PPV prediction value the most. 展开更多
关键词 Blasting vibration metaheuristic algorithms support vector regression peak particle velocity normalized mutual information
下载PDF
Support vector regression-based operational effectiveness evaluation approach to reconnaissance satellite system 被引量:1
2
作者 HAN Chi XIONG Wei +1 位作者 XIONG Minghui LIU Zhen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第6期1626-1644,共19页
As one of the most important part of weapon system of systems(WSoS),quantitative evaluation of reconnaissance satellite system(RSS)is indispensable during its construction and application.Aiming at the problem of nonl... As one of the most important part of weapon system of systems(WSoS),quantitative evaluation of reconnaissance satellite system(RSS)is indispensable during its construction and application.Aiming at the problem of nonlinear effectiveness evaluation under small sample conditions,we propose an evaluation method based on support vector regression(SVR)to effectively address the defects of traditional methods.Considering the performance of SVR is influenced by the penalty factor,kernel type,and other parameters deeply,the improved grey wolf optimizer(IGWO)is employed for parameter optimization.In the proposed IGWO algorithm,the opposition-based learning strategy is adopted to increase the probability of avoiding the local optima,the mutation operator is used to escape from premature convergence and differential convergence factors are applied to increase the rate of convergence.Numerical experiments of 14 test functions validate the applicability of IGWO algorithm dealing with global optimization.The index system and evaluation method are constructed based on the characteristics of RSS.To validate the proposed IGWO-SVR evaluation method,eight benchmark data sets and combat simulation are employed to estimate the evaluation accuracy,convergence performance and computational complexity.According to the experimental results,the proposed method outperforms several prediction based evaluation methods,verifies the superiority and effectiveness in RSS operational effectiveness evaluation. 展开更多
关键词 reconnaissance satellite system(RSS) support vector regression(svr) gray wolf optimizer opposition-based learning parameter optimization effectiveness evaluation
下载PDF
Improved Twin Support Vector Machine Algorithm and Applications in Classification Problems
3
作者 Sun Yi Wang Zhouyang 《China Communications》 SCIE CSCD 2024年第5期261-279,共19页
The distribution of data has a significant impact on the results of classification.When the distribution of one class is insignificant compared to the distribution of another class,data imbalance occurs.This will resu... The distribution of data has a significant impact on the results of classification.When the distribution of one class is insignificant compared to the distribution of another class,data imbalance occurs.This will result in rising outlier values and noise.Therefore,the speed and performance of classification could be greatly affected.Given the above problems,this paper starts with the motivation and mathematical representing of classification,puts forward a new classification method based on the relationship between different classification formulations.Combined with the vector characteristics of the actual problem and the choice of matrix characteristics,we firstly analyze the orderly regression to introduce slack variables to solve the constraint problem of the lone point.Then we introduce the fuzzy factors to solve the problem of the gap between the isolated points on the basis of the support vector machine.We introduce the cost control to solve the problem of sample skew.Finally,based on the bi-boundary support vector machine,a twostep weight setting twin classifier is constructed.This can help to identify multitasks with feature-selected patterns without the need for additional optimizers,which solves the problem of large-scale classification that can’t deal effectively with the very low category distribution gap. 展开更多
关键词 FUZZY ordered regression(OR) relaxing variables twin support vector machine
下载PDF
Spatial prediction of landslide susceptibility in western Serbia using hybrid support vector regression(SVR)with GWO,BAT and COA algorithms 被引量:9
4
作者 Abdul-Lateef Balogun Fatemeh Rezaie +6 位作者 Quoc Bao Pham Ljubomir Gigović Siniša Drobnjak Yusuf AAina Mahdi Panahi Shamsudeen Temitope Yekeen Saro Lee 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第3期384-398,共15页
In this study,we developed multiple hybrid machine-learning models to address parameter optimization limitations and enhance the spatial prediction of landslide susceptibility models.We created a geographic informatio... In this study,we developed multiple hybrid machine-learning models to address parameter optimization limitations and enhance the spatial prediction of landslide susceptibility models.We created a geographic information system database,and our analysis results were used to prepare a landslide inventory map containing 359 landslide events identified from Google Earth,aerial photographs,and other validated sources.A support vector regression(SVR)machine-learning model was used to divide the landslide inventory into training(70%)and testing(30%)datasets.The landslide susceptibility map was produced using 14 causative factors.We applied the established gray wolf optimization(GWO)algorithm,bat algorithm(BA),and cuckoo optimization algorithm(COA)to fine-tune the parameters of the SVR model to improve its predictive accuracy.The resultant hybrid models,SVR-GWO,SVR-BA,and SVR-COA,were validated in terms of the area under curve(AUC)and root mean square error(RMSE).The AUC values for the SVR-GWO(0.733),SVR-BA(0.724),and SVR-COA(0.738)models indicate their good prediction rates for landslide susceptibility modeling.SVR-COA had the greatest accuracy,with an RMSE of 0.21687,and SVR-BA had the least accuracy,with an RMSE of 0.23046.The three optimized hybrid models outperformed the SVR model(AUC=0.704,RMSE=0.26689),confirming the ability of metaheuristic algorithms to improve model performance. 展开更多
关键词 LANDSLIDE Machine learning METAHEURISTIC Spatial modeling support vector regression
下载PDF
Combination Computing of Support Vector Machine, Support Vector Regression and Molecular Docking for Potential Cytochrome P450 1A2 Inhibitors 被引量:1
5
作者 陈茜 乔连生 +2 位作者 蔡漪涟 张燕玲 李贡宇 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第5期629-634,I0002,共7页
The computational approaches of support vector machine (SVM), support vector regression (SVR) and molecular docking were widely utilized for the computation of active compounds. In this work, to improve the accura... The computational approaches of support vector machine (SVM), support vector regression (SVR) and molecular docking were widely utilized for the computation of active compounds. In this work, to improve the accuracy and reliability of prediction, the strategy of combining the above three computational approaches was applied to predict potential cytochrome P450 1A2 (CYP1A2) inhibitors. The accuracy of the optimal SVM qualitative model was 99.432%, 97.727%, and 91.667% for training set, internal test set and external test set, respectively, showing this model had high discrimination ability. The R2 and mean square error for the optimal SVR quantitative model were 0.763, 0.013 for training set, and 0.753, 0.056 for test set respectively, indicating that this SVR model has high predictive ability for the biolog-ical activities of compounds. According to the results of the SVM and SVR models, some types of descriptors were identi ed to be essential to bioactivity prediction of compounds, including the connectivity indices, constitutional descriptors and functional group counts. Moreover, molecular docking studies were used to reveal the binding poses and binding a n-ity of potential inhibitors interacting with CYP1A2. Wherein, the amino acids of THR124 and ASP320 could form key hydrogen bond interactions with active compounds. And the amino acids of ALA317 and GLY316 could form strong hydrophobic bond interactions with active compounds. The models obtained above were applied to discover potential CYP1A2 inhibitors from natural products, which could predict the CYPs-mediated drug-drug inter-actions and provide useful guidance and reference for rational drug combination therapy. A set of 20 potential CYP1A2 inhibitors were obtained. Part of the results was consistent with references, which further indicates the accuracy of these models and the reliability of this combinatorial computation strategy. 展开更多
关键词 support vector machine support vector regression Molecular docking CYPIA2 inhibitor
下载PDF
基于SPA-GA-SVR模型的土壤水分及温度预测 被引量:5
6
作者 朱成杰 汪正权 《中国农村水利水电》 北大核心 2024年第1期30-36,共7页
土壤湿度和温度是影响水文循环和气候变化的重要参数,在农业实践活动和生态平衡中起着重要作用。为及时、准确地监测土壤含水量(Soil Moisture Content,SMC)及温度,提出了一种基于高光谱数据的预测方法。实验数据集来自为期5天的实地测... 土壤湿度和温度是影响水文循环和气候变化的重要参数,在农业实践活动和生态平衡中起着重要作用。为及时、准确地监测土壤含水量(Soil Moisture Content,SMC)及温度,提出了一种基于高光谱数据的预测方法。实验数据集来自为期5天的实地测量,所获得的高光谱数据包含大量的噪声及冗余信息,因此首先用Savitzky-Golay卷积平滑对光谱数据进行降噪处理,利用连续投影算法(Successive Projection Algorithm,SPA)提取数据特征波长,然后通过遗传算法(Genetic Algorithm,GA)对支持向量机回归(Support Vector Regression,SVR)的超参数权值和偏置进行优化,构建SPA-GASVR混合算法模型对土壤水分和温度进行预测,并与BP神经网络(Back Propagation Neural Network,BPNN)、SPA-BP、SVR、SPA-SVR、GA-SVR这5种模型的预测性能进行比较。实验结果表明:各模型在土壤湿度低于30%的情况下,表现出的预测能力差异并不显著。但整体上,复合模型相比于单一的神经网络或机器学习模型具有明显的优势,且经过连续投影算法优化的模型进一步的提高其预测能力,最终SPA-GA-SVR算法在各项指标上均优于其他模型,土壤水分预测模型的R^(2)=0.981、RMSE=0.473%,土壤温度预测模型R^(2)=0.963、RMSE=0.883℃。实验证明基于高光谱数据,经过SPA和GA优化的SVR模型能实现对土壤湿度和温度精准的预测。该方法具有一定的应用价值和现实意义,可应用于便携式高光谱仪和无人机上,实现对土壤水分和温度的实时监测,为今后的播种及灌溉提供理论参考。 展开更多
关键词 土壤水分 土壤温度 高光谱 连续投影算法(SPA) 遗传算法-支持向量机回归(GA-svr)
下载PDF
Identification of dynamic systems using support vector regression neural networks 被引量:1
7
作者 李军 刘君华 《Journal of Southeast University(English Edition)》 EI CAS 2006年第2期228-233,共6页
A novel adaptive support vector regression neural network (SVR-NN) is proposed, which combines respectively merits of support vector machines and a neural network. First, a support vector regression approach is appl... A novel adaptive support vector regression neural network (SVR-NN) is proposed, which combines respectively merits of support vector machines and a neural network. First, a support vector regression approach is applied to determine the initial structure and initial weights of the SVR-NN so that the network architecture is easily determined and the hidden nodes can adaptively be constructed based on support vectors. Furthermore, an annealing robust learning algorithm is presented to adjust these hidden node parameters as well as the weights of the SVR-NN. To test the validity of the proposed method, it is demonstrated that the adaptive SVR-NN can be used effectively for the identification of nonlinear dynamic systems. Simulation results show that the identification schemes based on the SVR-NN give considerably better performance and show faster learning in comparison to the previous neural network method. 展开更多
关键词 support vector regression neural network system identification robust learning algorithm ADAPTABILITY
下载PDF
基于参数自适应SVR和VMD-TCN的水电机组劣化趋势预测 被引量:2
8
作者 王淑青 柯洋洋 +2 位作者 胡文庆 罗平章 李青珏 《中国农村水利水电》 北大核心 2024年第4期193-198,204,共7页
针对水电机组难以利用实时监测数据对机组劣化状态进行有效评估,以及水电机组不同运行工况对运行状态指标趋势预测模型参数影响显著的问题,提出一种基于参数自适应支持向量回归机(SVR)、变分模态分解(VMD)和时间卷积网络(TCN)的水电机... 针对水电机组难以利用实时监测数据对机组劣化状态进行有效评估,以及水电机组不同运行工况对运行状态指标趋势预测模型参数影响显著的问题,提出一种基于参数自适应支持向量回归机(SVR)、变分模态分解(VMD)和时间卷积网络(TCN)的水电机组劣化趋势预测方法;首先按照功率和水头将机组运行工况细化为若干典型工况,在此基础上采用改进天鹰算法建立SVR模型,对各个工况下的预测参数进行寻优,建立起工况与最优参数的数据;再通过神经网络对工况和最优预测参数进行拟合,构建出映射两者复杂关系的非线性函数,然后将构建出的映射关系加入到传统的SVR中,实现适应于水电机组工况变化的自适应SVR健康模型;其次,根据健康模型输出的标准值和监测数据,计算出劣化趋势序列;最后,考虑到劣化趋势序列的非线性因素,建立了一个基于VMD-TCN的时间序列预测模型,以实现对劣化趋势的准确预测。并设计多组对比实验,验证所提出模型的精度更高,时间更快。 展开更多
关键词 水电机组 劣化趋势预测 参数自适应 支持向量回归机 变分模态分解 时间卷积网络
下载PDF
Explanatory System of Support Vector Regression and Its Application in QSPR of Surfactants
9
作者 谭显胜 金晨钟 +1 位作者 李巍巍 袁哲明 《Agricultural Science & Technology》 CAS 2016年第11期2452-2456,共5页
In order to solve the problem of poor interpretability of support vector re- gression (SVR) applied in quantitative structure-property relationship (QSPR), a com- plete set of explanatory system for SVR was establ... In order to solve the problem of poor interpretability of support vector re- gression (SVR) applied in quantitative structure-property relationship (QSPR), a com- plete set of explanatory system for SVR was established based on F-test, The nov- el explanatory system includes significance tests of model and single-descriptor im- portance, single-descriptor effect and sensitivity analysis, and significance tests of interaction between two descriptors, etc. The results of example indicated that the explanatory results of the new system were consistent well with those of stepwise linear regression model and quadratic polynomial stepwise regression model. The explanatory SVR model will play an important role in regression analysis such as QSPR. 展开更多
关键词 support vector regression Explanatory system SURFACTANT Significant test Quantitative structure-property relationship
下载PDF
基于SVR的飓风海况下海浪多参数反演方法研究
10
作者 万勇 郭雅琦 +2 位作者 马恩男 戴永寿 张晓娜 《实验室研究与探索》 CAS 北大核心 2024年第10期74-81,180,共9页
针对卫星在飓风海况下观测海浪信息单一且准确性低的问题,利用哨兵1号卫星干涉宽刈幅模式合成孔径雷达(SAR)数据,通过分析SAR特征与海浪参数间的影响关系,筛选出26个特征作为输入变量,基于支持向量回归(SVR)建立海浪多参数反演模型。将... 针对卫星在飓风海况下观测海浪信息单一且准确性低的问题,利用哨兵1号卫星干涉宽刈幅模式合成孔径雷达(SAR)数据,通过分析SAR特征与海浪参数间的影响关系,筛选出26个特征作为输入变量,基于支持向量回归(SVR)建立海浪多参数反演模型。将该模型得到的有效波高、平均波周期、风涌浪波高、风涌浪波周期和平均波向与欧洲中期天气预报中心第5代全球气候再分析数据、国家浮标数据中心浮标数据以及传统MPI方法的结果进行对比。结果表明,基于SVR的海浪多参数反演模型能有效反演海浪多参数,且与理论方法相比,显著提高了飓风海况下海浪参数反演的准确性。 展开更多
关键词 合成孔径雷达 海浪多参数反演 飓风海况 支持向量机回归
下载PDF
基于SARIMA和SVR组合模型的转向架系统寿命评估
11
作者 师蔚 范乔 +2 位作者 杨洋 胡定玉 廖爱华 《铁道机车车辆》 北大核心 2024年第1期157-163,共7页
随着地铁运营时间和里程的增加,地铁车辆逐渐接近其理论寿命,为确保车辆运行安全性,需对其重要子系统进行健康状态及剩余寿命评估。文中选取车辆转向架系统作为研究对象,提出了一种基于协方差优选法的季节性回归移动平均(SARIMA)和支持... 随着地铁运营时间和里程的增加,地铁车辆逐渐接近其理论寿命,为确保车辆运行安全性,需对其重要子系统进行健康状态及剩余寿命评估。文中选取车辆转向架系统作为研究对象,提出了一种基于协方差优选法的季节性回归移动平均(SARIMA)和支持向量回归(SVR)的组合模型对转向架寿命进行评估。首先,将车辆转向架系统历史故障率转化为健康指数,然后基于协方差优选法将SARIMA和SVR进行赋权组合,根据转向架系统历史健康指数进行预测,最后建立历史和预测的健康指数与运行时间的数学模型,分析得到转向架系统的剩余寿命。以某地铁车辆转向架系统为例进行算例分析及验证,结果表明组合模型可更准确地预测其健康状态,为有关维修部门开展维修维护策略提供理论依据,估计得出其剩余寿命,为车辆寿命后期退役及延寿决策提供理论数据分析支撑。 展开更多
关键词 转向架系统 寿命预测 季节性回归移动平均和支持向量回归(SARIMA和svr) 组合模型 协方差优选法
下载PDF
基于PSO-SVR模型预测粮食孔隙率
12
作者 陈家豪 郑倩茹 +3 位作者 金立兵 郑德乾 尹君 李嘉欣 《粮食与油脂》 北大核心 2024年第6期55-59,共5页
利用自制粮食孔隙率测定仪,采用直接测量法对不同受压状态下的粮食单元体孔隙率进行测量,得到不同粮种、不同含水率和不同压力下的粮食单元体孔隙率。通过粒子群算法(PSO)优化支持向量回归(SVR),建立基于PSO-SVR粮食单元体孔隙率的预测... 利用自制粮食孔隙率测定仪,采用直接测量法对不同受压状态下的粮食单元体孔隙率进行测量,得到不同粮种、不同含水率和不同压力下的粮食单元体孔隙率。通过粒子群算法(PSO)优化支持向量回归(SVR),建立基于PSO-SVR粮食单元体孔隙率的预测模型,并与随机森林(RF)模型、SVR模型对比分析其性能。结果表明:PSO-SVR模型的各项性能指标均优于RF模型和SVR模型。PSO-SVR模型测试样本的均方误差(MSE)为0.0660、决定系数(R^(2))为0.9340、平均绝对误差(MAE)为0.2000,相较其他2种模型,该模型的预测结果误差小,具有较高的预测精度,可以有效预测粮食在不同压力下的孔隙率。 展开更多
关键词 粮食 孔隙率 机器学习 粒子群算法 支持向量回归
下载PDF
基于BB-递归核函数SVR算法的U型折弯件模型参数优化研究
13
作者 徐承亮 胡梓枫 +1 位作者 曹志勇 张详林 《湖北大学学报(自然科学版)》 CAS 2024年第1期115-121,共7页
影响U型折弯件回弹的因素众多,工件尺寸、力学性能、负载条件、材料各向异性等相互耦合,表现出高度复杂的非线性,从而导致回弹预测结果的不确定性。本研究以板料折弯件回弹后的张开角(α)为目标函数,构建一个递归核函数支持向量回归(SVR... 影响U型折弯件回弹的因素众多,工件尺寸、力学性能、负载条件、材料各向异性等相互耦合,表现出高度复杂的非线性,从而导致回弹预测结果的不确定性。本研究以板料折弯件回弹后的张开角(α)为目标函数,构建一个递归核函数支持向量回归(SVR)模型,并部署到分支界限法(BB)中,从而筛选出维度为4的最优的特征变量参数子集,其决定系数(R^(2))为0.982147,均方误差(MSE)为0.00433,模型预测精度相对较高。算法优化得到的折弯件参数为:厚度(t)为12 mm,上模宽度(d)为90 mm,上模圆角半径(r)为9 mm,载荷速度(v)为10 mm/s。BB递归核函数SVR算法、有限元模拟和实际测量的α分别为16.3°、17.5°和18.2°,尽管有限元结果更接近于实际值,但是BB递归核函数SVR算法可以为有限元模拟提供筛选出的参数(t,d,r,v)的数据,以快速进行模拟并预测张开角α,并实现回弹补偿装置的高效设计。 展开更多
关键词 U型折弯件 支持向量机 分支界限法 svr算法
下载PDF
基于SVR和电化学阻抗谱的锂电池内部温度在线估计
14
作者 李强 杨林 +2 位作者 李超凡 赵小巍 张树梅 《电源技术》 CAS 北大核心 2024年第9期1738-1746,共9页
准确实时地监测锂电池内部温度对于预防电池热失控至关重要。然而,目前尚缺乏有效的在线监测电池内部温度的方法。基于小型化阻抗测试系统,对锂离子电池在不同温度和荷电状态(SOC)下进行阻抗测试实验,研究电池温度和SOC对阻抗的影响,寻... 准确实时地监测锂电池内部温度对于预防电池热失控至关重要。然而,目前尚缺乏有效的在线监测电池内部温度的方法。基于小型化阻抗测试系统,对锂离子电池在不同温度和荷电状态(SOC)下进行阻抗测试实验,研究电池温度和SOC对阻抗的影响,寻找与温度强相关而与SOC弱相关的特征频率。在此基础上,提出了一种基于支持向量回归(SVR)算法的锂电池内部温度估计算法,无需额外传感器,实现对电池内部温度的无损准确估计。 展开更多
关键词 锂电池 内部温度 电化学阻抗谱 支持向量回归
下载PDF
基于PSO-SVR的海缆刚度预测模型研究
15
作者 苏凯 赵鑫蕊 +1 位作者 朱洪泽 程永光 《太阳能学报》 EI CAS CSCD 北大核心 2024年第8期458-465,共8页
海缆刚度是表征海缆截面力学特性的重要指标。精细数值模拟方法可考虑层间接触、摩擦等非线性行为,实现刚度的精确获取。但在海缆的截面初步设计中需进行不同几何参数下刚度的对比分析,这一过程需投入大量的人力物力以完成多个对比模型... 海缆刚度是表征海缆截面力学特性的重要指标。精细数值模拟方法可考虑层间接触、摩擦等非线性行为,实现刚度的精确获取。但在海缆的截面初步设计中需进行不同几何参数下刚度的对比分析,这一过程需投入大量的人力物力以完成多个对比模型的建模与计算。依托Nysted海上风电工程,建立海缆的有限元模型,采用正交试验法确定影响海缆抗拉刚度、逆时针抗扭刚度和顺时针抗扭刚度的主要因素;将主要影响因素作为粒子群优化算法-支持向量回归模型(PSO-SVR)的特征输入,分别建立海缆抗拉刚度、逆时针抗扭刚度和顺时针抗扭刚度的预测模型,并对比分析PSO-SVR模型与GRNN神经网络模型、BP神经网络模型的预测性能。计算结果表明:导体直径、钢丝直径、钢丝节距和铠装层数对海缆刚度的影响较大,而钢丝弹模对其影响较小;PSO-SVR模型的决定系数高于0.95且误差较低,预测效果均优于GRNN神经网络模型和BP神经网络模型,该预测模型可为海缆结构初步设计提供技术支撑。 展开更多
关键词 海上风电 海缆 刚度 粒子群优化 支持向量回归 正交试验
下载PDF
基于HSA-SVR的压电式车削测力仪多维力解耦
16
作者 张军 蔡佳乐 +3 位作者 王郁赫 滕玄德 张鹏 王尊豪 《仪表技术与传感器》 CSCD 北大核心 2024年第6期26-29,36,共5页
文中针对压电式多维力测力仪向间干扰大,制约测量精度的问题,分析了向间干扰对测力仪测量精度的影响,提出了一种基于支持向量回归机(SVR)的非线性解耦算法。利用混合模拟退火算法(HSA)对SVR进行参数寻优,对比并分析了HSA-SVR和线性最小... 文中针对压电式多维力测力仪向间干扰大,制约测量精度的问题,分析了向间干扰对测力仪测量精度的影响,提出了一种基于支持向量回归机(SVR)的非线性解耦算法。利用混合模拟退火算法(HSA)对SVR进行参数寻优,对比并分析了HSA-SVR和线性最小二乘解耦法(LS)的解耦性能,证明经该方法解耦后向间干扰最大为0.526%,非线性误差最大为0.214%,HSA-SVR具有更好的非线性解耦效果。 展开更多
关键词 压电测力仪 多维力测量 支持向量回归机 非线性解耦方法 融合算法
下载PDF
基于协同降噪与IGWO-SVR的高填方路基沉降预测
17
作者 苏谦 张棋 +2 位作者 张宗宇 牛云彬 陈德 《铁道学报》 EI CAS CSCD 北大核心 2024年第3期87-98,共12页
高填方路基沉降影响山岭重丘区重载铁路运营安全。为克服实测沉降数据掺杂随机噪声、现有预测模型适用性差的不足,提出基于协同降噪算法与IGWO-SVR模型的沉降预测方法。运用互补集合经验模态分解法(CEEMD)与小波包变换法(WPT)对含噪沉... 高填方路基沉降影响山岭重丘区重载铁路运营安全。为克服实测沉降数据掺杂随机噪声、现有预测模型适用性差的不足,提出基于协同降噪算法与IGWO-SVR模型的沉降预测方法。运用互补集合经验模态分解法(CEEMD)与小波包变换法(WPT)对含噪沉降数据进行协同降噪处理;提出基于佳点集初始化均布、非线性收敛控制与自身历史最优记忆位置更新的改进灰狼优化(IGWO)算法,并结合支持向量回归模型(SVR),构建IGWO-SVR沉降预测模型。进一步地,利用大准铁路工点及现有文献研究成果,验证IGWO-SVR模型的优越性。结果表明:协同降噪法可有效消除原数据中噪声项的干扰波动;在小样本数据集上,IGWO-SVR模型较传统沉降预测模型与现有文献所述预测模型,具有更高的预测精度与稳定性。研究成果为重载铁路高填方路基沉降预测提供了新途径。 展开更多
关键词 重载铁路 高填方路基 沉降预测 协同降噪 改进灰狼优化 支持向量回归
下载PDF
基于GA-PSO混合优化SVR的边坡危岩体稳定性评价模型
18
作者 庞俊勇 刘俊 +2 位作者 郑靓婧 李瑶鹤 苏红艳 《金属矿山》 CAS 北大核心 2024年第9期237-244,共8页
边坡危岩体稳定性评价是地质灾害防治的重要内容之一。传统的稳定性评价方法在求解复杂非线性问题时存在着精度较低、收敛速度慢等问题,为此,提出了一种基于GA-PSO混合优化支持向量回归(SVR)的边坡危岩体稳定性评价模型。首先,通过采集... 边坡危岩体稳定性评价是地质灾害防治的重要内容之一。传统的稳定性评价方法在求解复杂非线性问题时存在着精度较低、收敛速度慢等问题,为此,提出了一种基于GA-PSO混合优化支持向量回归(SVR)的边坡危岩体稳定性评价模型。首先,通过采集大量的实测数据和监测数据,建立了边坡危岩体的训练样本集;然后,将SVR算法引入稳定性评价中,利用其非线性映射性能拟合边坡危岩体的稳定性函数。为提高SVR模型的优化能力,将遗传算法(GA)和粒子群优化算法(PSO)相结合,形成了GA-PSO混合优化算法,并用于求解SVR模型中的优化问题。选取了多个现场实际边坡危岩体工程案例进行了算法测试。结果表明:相对于传统方法,GA-PSO混合优化SVR模型能够准确预测边坡危岩体的稳定性,并且具有较高的精度和较快的收敛速度。 展开更多
关键词 边坡危岩体 稳定性评价 支持向量机回归算法 遗传算法 粒子群优化算法
下载PDF
基于空间投影和聚类划分的SVR加速算法
19
作者 王梅 张天时 +1 位作者 王志宝 任怡果 《计算机技术与发展》 2024年第4期24-29,共6页
数据不仅能产生价值,还对统计学的科学发展提供了动力。随着科技的飞速发展,海量数据得以涌现,但大规模的数据会导致很多传统处理方法很难满足各领域对数据分析的需求。面对海量数据时代学习算法的低效性,分治法通常被认为是解决这一问... 数据不仅能产生价值,还对统计学的科学发展提供了动力。随着科技的飞速发展,海量数据得以涌现,但大规模的数据会导致很多传统处理方法很难满足各领域对数据分析的需求。面对海量数据时代学习算法的低效性,分治法通常被认为是解决这一问题最直接、最广泛使用的策略。SVR是一种强大的回归算法,在模式识别和数据挖掘等领域有广泛应用。然而在处理大规模数据时,SVR训练效率低。为此,该文利用分治思想提出一种基于空间投影和聚类划分的SVR加速算法(PKM-SVR)。利用投影向量将数据投影到二维空间;利用聚类方法将数据空间划分为k个互不相交的区域;在每个区域上训练SVR模型;利用每个区域的SVR模型预测落入同一区域的待识别样本。在标准数据集上与传统的数据划分方法进行对比实验,实验结果表明该算法训练速度较快,并表现出更好的预测性能。 展开更多
关键词 大规模数据 分治法 支持向量回归 主成分分析 聚类
下载PDF
Early Warning Model of Diamondback Moth Based on ε-Support Vector Regression
20
作者 宋婷婷 崔英玲 +1 位作者 冯德军 杨敬锋 《Plant Diseases and Pests》 CAS 2010年第4期25-27,共3页
The model for predicting vegetable pest diamondback moth was established based on E-Support Vector Regression algorithms in the multiply occurrence season of diamondback moth. The experimental data of diamondback moth... The model for predicting vegetable pest diamondback moth was established based on E-Support Vector Regression algorithms in the multiply occurrence season of diamondback moth. The experimental data of diamondback moth in Guangdong vegetable were analyzed, and the result showed that when penalty factor c was 43, kernel function parameter k was O. 2, the better prediction result could be obtained by the early warning model of E-Support Vector Regression algorithms. 展开更多
关键词 FORECAST Diamondback moth E-support vector regression
下载PDF
上一页 1 2 205 下一页 到第
使用帮助 返回顶部