Accurately estimating blasting vibration during rock blasting is the foundation of blasting vibration management.In this study,Tuna Swarm Optimization(TSO),Whale Optimization Algorithm(WOA),and Cuckoo Search(CS)were u...Accurately estimating blasting vibration during rock blasting is the foundation of blasting vibration management.In this study,Tuna Swarm Optimization(TSO),Whale Optimization Algorithm(WOA),and Cuckoo Search(CS)were used to optimize two hyperparameters in support vector regression(SVR).Based on these methods,three hybrid models to predict peak particle velocity(PPV)for bench blasting were developed.Eighty-eight samples were collected to establish the PPV database,eight initial blasting parameters were chosen as input parameters for the predictionmodel,and the PPV was the output parameter.As predictive performance evaluation indicators,the coefficient of determination(R2),rootmean square error(RMSE),mean absolute error(MAE),and a10-index were selected.The normalizedmutual information value is then used to evaluate the impact of various input parameters on the PPV prediction outcomes.According to the research findings,TSO,WOA,and CS can all enhance the predictive performance of the SVR model.The TSO-SVR model provides the most accurate predictions.The performances of the optimized hybrid SVR models are superior to the unoptimized traditional prediction model.The maximum charge per delay impacts the PPV prediction value the most.展开更多
As one of the most important part of weapon system of systems(WSoS),quantitative evaluation of reconnaissance satellite system(RSS)is indispensable during its construction and application.Aiming at the problem of nonl...As one of the most important part of weapon system of systems(WSoS),quantitative evaluation of reconnaissance satellite system(RSS)is indispensable during its construction and application.Aiming at the problem of nonlinear effectiveness evaluation under small sample conditions,we propose an evaluation method based on support vector regression(SVR)to effectively address the defects of traditional methods.Considering the performance of SVR is influenced by the penalty factor,kernel type,and other parameters deeply,the improved grey wolf optimizer(IGWO)is employed for parameter optimization.In the proposed IGWO algorithm,the opposition-based learning strategy is adopted to increase the probability of avoiding the local optima,the mutation operator is used to escape from premature convergence and differential convergence factors are applied to increase the rate of convergence.Numerical experiments of 14 test functions validate the applicability of IGWO algorithm dealing with global optimization.The index system and evaluation method are constructed based on the characteristics of RSS.To validate the proposed IGWO-SVR evaluation method,eight benchmark data sets and combat simulation are employed to estimate the evaluation accuracy,convergence performance and computational complexity.According to the experimental results,the proposed method outperforms several prediction based evaluation methods,verifies the superiority and effectiveness in RSS operational effectiveness evaluation.展开更多
In this study,we developed multiple hybrid machine-learning models to address parameter optimization limitations and enhance the spatial prediction of landslide susceptibility models.We created a geographic informatio...In this study,we developed multiple hybrid machine-learning models to address parameter optimization limitations and enhance the spatial prediction of landslide susceptibility models.We created a geographic information system database,and our analysis results were used to prepare a landslide inventory map containing 359 landslide events identified from Google Earth,aerial photographs,and other validated sources.A support vector regression(SVR)machine-learning model was used to divide the landslide inventory into training(70%)and testing(30%)datasets.The landslide susceptibility map was produced using 14 causative factors.We applied the established gray wolf optimization(GWO)algorithm,bat algorithm(BA),and cuckoo optimization algorithm(COA)to fine-tune the parameters of the SVR model to improve its predictive accuracy.The resultant hybrid models,SVR-GWO,SVR-BA,and SVR-COA,were validated in terms of the area under curve(AUC)and root mean square error(RMSE).The AUC values for the SVR-GWO(0.733),SVR-BA(0.724),and SVR-COA(0.738)models indicate their good prediction rates for landslide susceptibility modeling.SVR-COA had the greatest accuracy,with an RMSE of 0.21687,and SVR-BA had the least accuracy,with an RMSE of 0.23046.The three optimized hybrid models outperformed the SVR model(AUC=0.704,RMSE=0.26689),confirming the ability of metaheuristic algorithms to improve model performance.展开更多
The computational approaches of support vector machine (SVM), support vector regression (SVR) and molecular docking were widely utilized for the computation of active compounds. In this work, to improve the accura...The computational approaches of support vector machine (SVM), support vector regression (SVR) and molecular docking were widely utilized for the computation of active compounds. In this work, to improve the accuracy and reliability of prediction, the strategy of combining the above three computational approaches was applied to predict potential cytochrome P450 1A2 (CYP1A2) inhibitors. The accuracy of the optimal SVM qualitative model was 99.432%, 97.727%, and 91.667% for training set, internal test set and external test set, respectively, showing this model had high discrimination ability. The R2 and mean square error for the optimal SVR quantitative model were 0.763, 0.013 for training set, and 0.753, 0.056 for test set respectively, indicating that this SVR model has high predictive ability for the biolog-ical activities of compounds. According to the results of the SVM and SVR models, some types of descriptors were identi ed to be essential to bioactivity prediction of compounds, including the connectivity indices, constitutional descriptors and functional group counts. Moreover, molecular docking studies were used to reveal the binding poses and binding a n-ity of potential inhibitors interacting with CYP1A2. Wherein, the amino acids of THR124 and ASP320 could form key hydrogen bond interactions with active compounds. And the amino acids of ALA317 and GLY316 could form strong hydrophobic bond interactions with active compounds. The models obtained above were applied to discover potential CYP1A2 inhibitors from natural products, which could predict the CYPs-mediated drug-drug inter-actions and provide useful guidance and reference for rational drug combination therapy. A set of 20 potential CYP1A2 inhibitors were obtained. Part of the results was consistent with references, which further indicates the accuracy of these models and the reliability of this combinatorial computation strategy.展开更多
A novel adaptive support vector regression neural network (SVR-NN) is proposed, which combines respectively merits of support vector machines and a neural network. First, a support vector regression approach is appl...A novel adaptive support vector regression neural network (SVR-NN) is proposed, which combines respectively merits of support vector machines and a neural network. First, a support vector regression approach is applied to determine the initial structure and initial weights of the SVR-NN so that the network architecture is easily determined and the hidden nodes can adaptively be constructed based on support vectors. Furthermore, an annealing robust learning algorithm is presented to adjust these hidden node parameters as well as the weights of the SVR-NN. To test the validity of the proposed method, it is demonstrated that the adaptive SVR-NN can be used effectively for the identification of nonlinear dynamic systems. Simulation results show that the identification schemes based on the SVR-NN give considerably better performance and show faster learning in comparison to the previous neural network method.展开更多
The distribution of data has a significant impact on the results of classification.When the distribution of one class is insignificant compared to the distribution of another class,data imbalance occurs.This will resu...The distribution of data has a significant impact on the results of classification.When the distribution of one class is insignificant compared to the distribution of another class,data imbalance occurs.This will result in rising outlier values and noise.Therefore,the speed and performance of classification could be greatly affected.Given the above problems,this paper starts with the motivation and mathematical representing of classification,puts forward a new classification method based on the relationship between different classification formulations.Combined with the vector characteristics of the actual problem and the choice of matrix characteristics,we firstly analyze the orderly regression to introduce slack variables to solve the constraint problem of the lone point.Then we introduce the fuzzy factors to solve the problem of the gap between the isolated points on the basis of the support vector machine.We introduce the cost control to solve the problem of sample skew.Finally,based on the bi-boundary support vector machine,a twostep weight setting twin classifier is constructed.This can help to identify multitasks with feature-selected patterns without the need for additional optimizers,which solves the problem of large-scale classification that can’t deal effectively with the very low category distribution gap.展开更多
In order to solve the problem of poor interpretability of support vector re- gression (SVR) applied in quantitative structure-property relationship (QSPR), a com- plete set of explanatory system for SVR was establ...In order to solve the problem of poor interpretability of support vector re- gression (SVR) applied in quantitative structure-property relationship (QSPR), a com- plete set of explanatory system for SVR was established based on F-test, The nov- el explanatory system includes significance tests of model and single-descriptor im- portance, single-descriptor effect and sensitivity analysis, and significance tests of interaction between two descriptors, etc. The results of example indicated that the explanatory results of the new system were consistent well with those of stepwise linear regression model and quadratic polynomial stepwise regression model. The explanatory SVR model will play an important role in regression analysis such as QSPR.展开更多
In this present time,Human Activity Recognition(HAR)has been of considerable aid in the case of health monitoring and recovery.The exploitation of machine learning with an intelligent agent in the area of health infor...In this present time,Human Activity Recognition(HAR)has been of considerable aid in the case of health monitoring and recovery.The exploitation of machine learning with an intelligent agent in the area of health informatics gathered using HAR augments the decision-making quality and significance.Although many research works conducted on Smart Healthcare Monitoring,there remain a certain number of pitfalls such as time,overhead,and falsification involved during analysis.Therefore,this paper proposes a Statistical Partial Regression and Support Vector Intelligent Agent Learning(SPR-SVIAL)for Smart Healthcare Monitoring.At first,the Statistical Partial Regression Feature Extraction model is used for data preprocessing along with the dimensionality-reduced features extraction process.Here,the input dataset the continuous beat-to-beat heart data,triaxial accelerometer data,and psychological characteristics were acquired from IoT wearable devices.To attain highly accurate Smart Healthcare Monitoring with less time,Partial Least Square helps extract the dimensionality-reduced features.After that,with these resulting features,SVIAL is proposed for Smart Healthcare Monitoring with the help of Machine Learning and Intelligent Agents to minimize both analysis falsification and overhead.Experimental evaluation is carried out for factors such as time,overhead,and false positive rate accuracy concerning several instances.The quantitatively analyzed results indicate the better performance of our proposed SPR-SVIAL method when compared with two state-of-the-art methods.展开更多
The model for predicting vegetable pest diamondback moth was established based on E-Support Vector Regression algorithms in the multiply occurrence season of diamondback moth. The experimental data of diamondback moth...The model for predicting vegetable pest diamondback moth was established based on E-Support Vector Regression algorithms in the multiply occurrence season of diamondback moth. The experimental data of diamondback moth in Guangdong vegetable were analyzed, and the result showed that when penalty factor c was 43, kernel function parameter k was O. 2, the better prediction result could be obtained by the early warning model of E-Support Vector Regression algorithms.展开更多
This paper describes a robust support vector regression (SVR) methodology, which can offer superior performance for important process engineering problems. The method incorporates hybrid support vector regression an...This paper describes a robust support vector regression (SVR) methodology, which can offer superior performance for important process engineering problems. The method incorporates hybrid support vector regression and genetic algorithm technique (SVR-GA) for efficient tuning of SVR meta-parameters. The algorithm has been applied for prediction of pressure drop of solid liquid slurry flow. A comparison with selected correlations in the lit- erature showed that the developed SVR correlation noticeably improved the prediction of pressure drop over a wide range of operating conditions, physical properties, and pipe diameters.展开更多
In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the...In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the reconstructed phase space, the local support vector machine prediction method is used to predict the traffic measurement data, and the BIC-based neighbouring point selection method is used to choose the number of the nearest neighbouring points for the local support vector machine regression model. The experimental results show that the local support vector machine prediction method whose neighbouring points are optimized can effectively predict the small-time scale traffic measurement data and can reproduce the statistical features of real traffic measurements.展开更多
Choosing optimal parameters for support vector regression (SVR) is an important step in SVR. design, which strongly affects the pefformance of SVR. In this paper, based on the analysis of influence of SVR parameters...Choosing optimal parameters for support vector regression (SVR) is an important step in SVR. design, which strongly affects the pefformance of SVR. In this paper, based on the analysis of influence of SVR parameters on generalization error, a new approach with two steps is proposed for selecting SVR parameters, First the kernel function and SVM parameters are optimized roughly through genetic algorithm, then the kernel parameter is finely adjusted by local linear search, This approach has been successfully applied to the prediction model of the sulfur content in hot metal. The experiment results show that the proposed approach can yield better generalization performance of SVR than other methods,展开更多
Metamodeling techniques have been used in robust optimization to reduce the high computational cost of the uncertainty analysis and improve the performance of robust optimization problems with computationally expensiv...Metamodeling techniques have been used in robust optimization to reduce the high computational cost of the uncertainty analysis and improve the performance of robust optimization problems with computationally expensive simulation models. Existing metamodels main focus on polynomial regression(PR), neural networks(NN) and Kriging models, these metamodels are not well suited for large-scale robust optimization problems with small size training sets and high nonlinearity. To address the problem, a reduced approximation model technique based on support vector regression(SVR) is introduced in order to improve the accuracy of metamodels. A robust optimization method based on SVR is presented for problems that involve high dimension and nonlinear. First appropriate design parameter samples are selected by experimental design theories, then the response samples are obtained from the simulations such as finite element analysis, the SVR metamodel is constructed and treated as the mean and the variance of the objective performance functions. Combining other constraints, the robust optimization model is formed which can be solved by genetic algorithm (GA). The applicability of the method developed is demonstrated using a case of two-bar structure system study. The performances of SVR were compared with those of PR, Kriging and back-propagation neural networks(BPNN), the comparison results show that the prediction accuracy of the SVR metamodel was higher than those of other metamodels under uncertainty. The robust optimization solutions are near to the real result, and the proposed method is found to be accurate and efficient for robust optimization. This reaserch provides an efficient method for robust optimization problems with complex structure.展开更多
Removal of cloud cover on the satellite remote sensing image can effectively improve the availability of remote sensing images. For thin cloud cover, support vector value contourlet transform is used to achieve multi-...Removal of cloud cover on the satellite remote sensing image can effectively improve the availability of remote sensing images. For thin cloud cover, support vector value contourlet transform is used to achieve multi-scale decomposition of the area of thin cloud cover on remote sensing images. Through enhancing coefficients of high frequency and suppressing coefficients of low frequency, the thin cloud is removed. For thick cloud cover, if the areas of thick cloud cover on multi-source or multi-temporal remote sensing images do not overlap, the multi-output support vector regression learning method is used to remove this kind of thick clouds. If the thick cloud cover areas overlap, by using the multi-output learning of the surrounding areas to predict the surface features of the overlapped thick cloud cover areas, this kind of thick cloud is removed. Experimental results show that the proposed cloud removal method can effectively solve the problems of the cloud overlapping and radiation difference among multi-source images. The cloud removal image is clear and smooth.展开更多
As the solutions of the least squares support vector regression machine (LS-SVRM) are not sparse, it leads to slow prediction speed and limits its applications. The defects of the ex- isting adaptive pruning algorit...As the solutions of the least squares support vector regression machine (LS-SVRM) are not sparse, it leads to slow prediction speed and limits its applications. The defects of the ex- isting adaptive pruning algorithm for LS-SVRM are that the training speed is slow, and the generalization performance is not satis- factory, especially for large scale problems. Hence an improved algorithm is proposed. In order to accelerate the training speed, the pruned data point and fast leave-one-out error are employed to validate the temporary model obtained after decremental learning. The novel objective function in the termination condition which in- volves the whole constraints generated by all training data points and three pruning strategies are employed to improve the generali- zation performance. The effectiveness of the proposed algorithm is tested on six benchmark datasets. The sparse LS-SVRM model has a faster training speed and better generalization performance.展开更多
Prediction of primary quality variables in real time with adaptation capability for varying process conditions is a critical task in process industries.This article focuses on the development of non-linear adaptive so...Prediction of primary quality variables in real time with adaptation capability for varying process conditions is a critical task in process industries.This article focuses on the development of non-linear adaptive soft sensors for prediction of naphtha initial boiling point(IBP)and end boiling point(EBP)in crude distillation unit.In this work,adaptive inferential sensors with linear and non-linear local models are reported based on recursive just in time learning(JITL)approach.The different types of local models designed are locally weighted regression(LWR),multiple linear regression(MLR),partial least squares regression(PLS)and support vector regression(SVR).In addition to model development,the effect of relevant dataset size on model prediction accuracy and model computation time is also investigated.Results show that the JITL model based on support vector regression with iterative single data algorithm optimization(ISDA)local model(JITL-SVR:ISDA)yielded best prediction accuracy in reasonable computation time.展开更多
A novel data-driven, soft sensor based on support vector regression (SVR) integrated with a data compression technique was developed to predict the product quality for the hydrodesulfurization (HDS) process. A wid...A novel data-driven, soft sensor based on support vector regression (SVR) integrated with a data compression technique was developed to predict the product quality for the hydrodesulfurization (HDS) process. A wide range of experimental data was taken from a HDS setup to train and test the SVR model. Hyper-parameter tuning is one of the main challenges to improve predictive accuracy of the SVR model. Therefore, a hybrid approach using a combination of genetic algorithm (GA) and sequential quadratic programming (SQP) methods (GA-SQP) was developed. Performance of different optimization algorithms including GA-SQP, GA, pattern search (PS), and grid search (GS) indicated that the best average absolute relative error (AARE), squared correlation coefficient (R2), and computation time (CT) (AARE = 0.0745, R2 = 0.997 and CT = 56 s) was accomplished by the hybrid algorithm. Moreover, to reduce the CT and improve the accuracy of the SVR model, the vector quantization (VQ) technique was used. The results also showed that the VQ technique can decrease the training time and improve prediction performance of the SVR model. The proposed method can provide a robust, soft sensor in a wide range of sulfur contents with good accuracy.展开更多
In order to accurately predict bus travel time, a hybrid model based on combining wavelet transform technique with support vector regression(WT-SVR) model is employed. In this model, wavelet decomposition is used to e...In order to accurately predict bus travel time, a hybrid model based on combining wavelet transform technique with support vector regression(WT-SVR) model is employed. In this model, wavelet decomposition is used to extract important information of data at different levels and enhances the forecasting ability of the model. After wavelet transform different components are forecasted by their corresponding SVR predictors. The final prediction result is obtained by the summation of the predicted results for each component. The proposed hybrid model is examined by the data of bus route No.550 in Nanjing, China. The performance of WT-SVR model is evaluated by mean absolute error(MAE), mean absolute percent error(MAPE) and relative mean square error(RMSE), and also compared to regular SVR and ANN models. The results show that the prediction method based on wavelet transform and SVR has better tracking ability and dynamic behavior than regular SVR and ANN models. The forecasting performance is remarkably improved to obtain within 6% MAPE for testing section Ⅰ and 8% MAPE for testing section Ⅱ, which proves that the suggested approach is feasible and applicable in bus travel time prediction.展开更多
This paper proposed a semi-supervised regression model with co-training algorithm based on support vector machine, which was used for retrieving water quality variables from SPOT 5 remote sensing data. The model consi...This paper proposed a semi-supervised regression model with co-training algorithm based on support vector machine, which was used for retrieving water quality variables from SPOT 5 remote sensing data. The model consisted of two support vector regressors (SVRs). Nonlinear relationship between water quality variables and SPOT 5 spectrum was described by the two SVRs, and semi-supervised co-training algorithm for the SVRs was es-tablished. The model was used for retrieving concentrations of four representative pollution indicators―permangan- ate index (CODmn), ammonia nitrogen (NH3-N), chemical oxygen demand (COD) and dissolved oxygen (DO) of the Weihe River in Shaanxi Province, China. The spatial distribution map for those variables over a part of the Weihe River was also produced. SVR can be used to implement any nonlinear mapping readily, and semi-supervis- ed learning can make use of both labeled and unlabeled samples. By integrating the two SVRs and using semi-supervised learning, we provide an operational method when paired samples are limited. The results show that it is much better than the multiple statistical regression method, and can provide the whole water pollution condi-tions for management fast and can be extended to hyperspectral remote sensing applications.展开更多
A new customization approach based on support vector regression (SVR) is proposed to obtain individual headrelated impulse response (HRIR) without complex measurement and special equipment. Principal component ana...A new customization approach based on support vector regression (SVR) is proposed to obtain individual headrelated impulse response (HRIR) without complex measurement and special equipment. Principal component analysis (PCA) is first applied to obtain a few principal components and corresponding weight vectors correlated with individual anthropometric parameters. Then the weight vectors act as output of the nonlinear regression model. Some measured anthropometric parameters are selected as input of the model according to the correlation coefficients between the parameters and the weight vectors. After the regression model is learned from the training data, the individual HRIR can be predicted based on the measured anthropometric parameters. Compared with a back-propagation neural network (BPNN) for nonlinear regression, better generalization and prediction performance for small training samples can be obtained using the proposed PCA-SVR algorithm.展开更多
基金financially supported by the NationalNatural Science Foundation of China(Grant No.42072309)the Fundamental Research Funds for National University,China University of Geosciences(Wuhan)(Grant No.CUGDCJJ202217)+1 种基金the Knowledge Innovation Program of Wuhan-Basic Research(Grant No.2022020801010199)the Hubei Key Laboratory of Blasting Engineering Foundation(HKLBEF202002).
文摘Accurately estimating blasting vibration during rock blasting is the foundation of blasting vibration management.In this study,Tuna Swarm Optimization(TSO),Whale Optimization Algorithm(WOA),and Cuckoo Search(CS)were used to optimize two hyperparameters in support vector regression(SVR).Based on these methods,three hybrid models to predict peak particle velocity(PPV)for bench blasting were developed.Eighty-eight samples were collected to establish the PPV database,eight initial blasting parameters were chosen as input parameters for the predictionmodel,and the PPV was the output parameter.As predictive performance evaluation indicators,the coefficient of determination(R2),rootmean square error(RMSE),mean absolute error(MAE),and a10-index were selected.The normalizedmutual information value is then used to evaluate the impact of various input parameters on the PPV prediction outcomes.According to the research findings,TSO,WOA,and CS can all enhance the predictive performance of the SVR model.The TSO-SVR model provides the most accurate predictions.The performances of the optimized hybrid SVR models are superior to the unoptimized traditional prediction model.The maximum charge per delay impacts the PPV prediction value the most.
基金the National Defense Science and Technology Key Laboratory Fund of China(XM2020XT1023).
文摘As one of the most important part of weapon system of systems(WSoS),quantitative evaluation of reconnaissance satellite system(RSS)is indispensable during its construction and application.Aiming at the problem of nonlinear effectiveness evaluation under small sample conditions,we propose an evaluation method based on support vector regression(SVR)to effectively address the defects of traditional methods.Considering the performance of SVR is influenced by the penalty factor,kernel type,and other parameters deeply,the improved grey wolf optimizer(IGWO)is employed for parameter optimization.In the proposed IGWO algorithm,the opposition-based learning strategy is adopted to increase the probability of avoiding the local optima,the mutation operator is used to escape from premature convergence and differential convergence factors are applied to increase the rate of convergence.Numerical experiments of 14 test functions validate the applicability of IGWO algorithm dealing with global optimization.The index system and evaluation method are constructed based on the characteristics of RSS.To validate the proposed IGWO-SVR evaluation method,eight benchmark data sets and combat simulation are employed to estimate the evaluation accuracy,convergence performance and computational complexity.According to the experimental results,the proposed method outperforms several prediction based evaluation methods,verifies the superiority and effectiveness in RSS operational effectiveness evaluation.
基金supported by the Basic Research Project of the Korea Institute of Geoscience and Mineral Resources(KIGAM)Project of Environmental Business Big Data Platform and Center Construction funded by the Ministry of Science and ICT。
文摘In this study,we developed multiple hybrid machine-learning models to address parameter optimization limitations and enhance the spatial prediction of landslide susceptibility models.We created a geographic information system database,and our analysis results were used to prepare a landslide inventory map containing 359 landslide events identified from Google Earth,aerial photographs,and other validated sources.A support vector regression(SVR)machine-learning model was used to divide the landslide inventory into training(70%)and testing(30%)datasets.The landslide susceptibility map was produced using 14 causative factors.We applied the established gray wolf optimization(GWO)algorithm,bat algorithm(BA),and cuckoo optimization algorithm(COA)to fine-tune the parameters of the SVR model to improve its predictive accuracy.The resultant hybrid models,SVR-GWO,SVR-BA,and SVR-COA,were validated in terms of the area under curve(AUC)and root mean square error(RMSE).The AUC values for the SVR-GWO(0.733),SVR-BA(0.724),and SVR-COA(0.738)models indicate their good prediction rates for landslide susceptibility modeling.SVR-COA had the greatest accuracy,with an RMSE of 0.21687,and SVR-BA had the least accuracy,with an RMSE of 0.23046.The three optimized hybrid models outperformed the SVR model(AUC=0.704,RMSE=0.26689),confirming the ability of metaheuristic algorithms to improve model performance.
文摘The computational approaches of support vector machine (SVM), support vector regression (SVR) and molecular docking were widely utilized for the computation of active compounds. In this work, to improve the accuracy and reliability of prediction, the strategy of combining the above three computational approaches was applied to predict potential cytochrome P450 1A2 (CYP1A2) inhibitors. The accuracy of the optimal SVM qualitative model was 99.432%, 97.727%, and 91.667% for training set, internal test set and external test set, respectively, showing this model had high discrimination ability. The R2 and mean square error for the optimal SVR quantitative model were 0.763, 0.013 for training set, and 0.753, 0.056 for test set respectively, indicating that this SVR model has high predictive ability for the biolog-ical activities of compounds. According to the results of the SVM and SVR models, some types of descriptors were identi ed to be essential to bioactivity prediction of compounds, including the connectivity indices, constitutional descriptors and functional group counts. Moreover, molecular docking studies were used to reveal the binding poses and binding a n-ity of potential inhibitors interacting with CYP1A2. Wherein, the amino acids of THR124 and ASP320 could form key hydrogen bond interactions with active compounds. And the amino acids of ALA317 and GLY316 could form strong hydrophobic bond interactions with active compounds. The models obtained above were applied to discover potential CYP1A2 inhibitors from natural products, which could predict the CYPs-mediated drug-drug inter-actions and provide useful guidance and reference for rational drug combination therapy. A set of 20 potential CYP1A2 inhibitors were obtained. Part of the results was consistent with references, which further indicates the accuracy of these models and the reliability of this combinatorial computation strategy.
文摘A novel adaptive support vector regression neural network (SVR-NN) is proposed, which combines respectively merits of support vector machines and a neural network. First, a support vector regression approach is applied to determine the initial structure and initial weights of the SVR-NN so that the network architecture is easily determined and the hidden nodes can adaptively be constructed based on support vectors. Furthermore, an annealing robust learning algorithm is presented to adjust these hidden node parameters as well as the weights of the SVR-NN. To test the validity of the proposed method, it is demonstrated that the adaptive SVR-NN can be used effectively for the identification of nonlinear dynamic systems. Simulation results show that the identification schemes based on the SVR-NN give considerably better performance and show faster learning in comparison to the previous neural network method.
基金Hebei Province Key Research and Development Project(No.20313701D)Hebei Province Key Research and Development Project(No.19210404D)+13 种基金Mobile computing and universal equipment for the Beijing Key Laboratory Open Project,The National Social Science Fund of China(17AJL014)Beijing University of Posts and Telecommunications Construction of World-Class Disciplines and Characteristic Development Guidance Special Fund “Cultural Inheritance and Innovation”Project(No.505019221)National Natural Science Foundation of China(No.U1536112)National Natural Science Foundation of China(No.81673697)National Natural Science Foundation of China(61872046)The National Social Science Fund Key Project of China(No.17AJL014)“Blue Fire Project”(Huizhou)University of Technology Joint Innovation Project(CXZJHZ201729)Industry-University Cooperation Cooperative Education Project of the Ministry of Education(No.201902218004)Industry-University Cooperation Cooperative Education Project of the Ministry of Education(No.201902024006)Industry-University Cooperation Cooperative Education Project of the Ministry of Education(No.201901197007)Industry-University Cooperation Collaborative Education Project of the Ministry of Education(No.201901199005)The Ministry of Education Industry-University Cooperation Collaborative Education Project(No.201901197001)Shijiazhuang science and technology plan project(236240267A)Hebei Province key research and development plan project(20312701D)。
文摘The distribution of data has a significant impact on the results of classification.When the distribution of one class is insignificant compared to the distribution of another class,data imbalance occurs.This will result in rising outlier values and noise.Therefore,the speed and performance of classification could be greatly affected.Given the above problems,this paper starts with the motivation and mathematical representing of classification,puts forward a new classification method based on the relationship between different classification formulations.Combined with the vector characteristics of the actual problem and the choice of matrix characteristics,we firstly analyze the orderly regression to introduce slack variables to solve the constraint problem of the lone point.Then we introduce the fuzzy factors to solve the problem of the gap between the isolated points on the basis of the support vector machine.We introduce the cost control to solve the problem of sample skew.Finally,based on the bi-boundary support vector machine,a twostep weight setting twin classifier is constructed.This can help to identify multitasks with feature-selected patterns without the need for additional optimizers,which solves the problem of large-scale classification that can’t deal effectively with the very low category distribution gap.
基金Supported by Industrialization Cultivation Projects in Colleges and Universities of Hunan Province(13CY030)Natural Science Foundation of Hunan Province(12JJ6026)Colleges and Universities Open Innovation Platform Fund of Hunan Province(14K053,15K066)~~
文摘In order to solve the problem of poor interpretability of support vector re- gression (SVR) applied in quantitative structure-property relationship (QSPR), a com- plete set of explanatory system for SVR was established based on F-test, The nov- el explanatory system includes significance tests of model and single-descriptor im- portance, single-descriptor effect and sensitivity analysis, and significance tests of interaction between two descriptors, etc. The results of example indicated that the explanatory results of the new system were consistent well with those of stepwise linear regression model and quadratic polynomial stepwise regression model. The explanatory SVR model will play an important role in regression analysis such as QSPR.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R194)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘In this present time,Human Activity Recognition(HAR)has been of considerable aid in the case of health monitoring and recovery.The exploitation of machine learning with an intelligent agent in the area of health informatics gathered using HAR augments the decision-making quality and significance.Although many research works conducted on Smart Healthcare Monitoring,there remain a certain number of pitfalls such as time,overhead,and falsification involved during analysis.Therefore,this paper proposes a Statistical Partial Regression and Support Vector Intelligent Agent Learning(SPR-SVIAL)for Smart Healthcare Monitoring.At first,the Statistical Partial Regression Feature Extraction model is used for data preprocessing along with the dimensionality-reduced features extraction process.Here,the input dataset the continuous beat-to-beat heart data,triaxial accelerometer data,and psychological characteristics were acquired from IoT wearable devices.To attain highly accurate Smart Healthcare Monitoring with less time,Partial Least Square helps extract the dimensionality-reduced features.After that,with these resulting features,SVIAL is proposed for Smart Healthcare Monitoring with the help of Machine Learning and Intelligent Agents to minimize both analysis falsification and overhead.Experimental evaluation is carried out for factors such as time,overhead,and false positive rate accuracy concerning several instances.The quantitatively analyzed results indicate the better performance of our proposed SPR-SVIAL method when compared with two state-of-the-art methods.
基金Supported by Science and Technology Projects in Guangdong Province(2009CD058,2009CD078,2009CD079,2009CD080)~~
文摘The model for predicting vegetable pest diamondback moth was established based on E-Support Vector Regression algorithms in the multiply occurrence season of diamondback moth. The experimental data of diamondback moth in Guangdong vegetable were analyzed, and the result showed that when penalty factor c was 43, kernel function parameter k was O. 2, the better prediction result could be obtained by the early warning model of E-Support Vector Regression algorithms.
文摘This paper describes a robust support vector regression (SVR) methodology, which can offer superior performance for important process engineering problems. The method incorporates hybrid support vector regression and genetic algorithm technique (SVR-GA) for efficient tuning of SVR meta-parameters. The algorithm has been applied for prediction of pressure drop of solid liquid slurry flow. A comparison with selected correlations in the lit- erature showed that the developed SVR correlation noticeably improved the prediction of pressure drop over a wide range of operating conditions, physical properties, and pipe diameters.
基金Project supported by the National Natural Science Foundation of China (Grant No 60573065)the Natural Science Foundation of Shandong Province,China (Grant No Y2007G33)the Key Subject Research Foundation of Shandong Province,China(Grant No XTD0708)
文摘In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the reconstructed phase space, the local support vector machine prediction method is used to predict the traffic measurement data, and the BIC-based neighbouring point selection method is used to choose the number of the nearest neighbouring points for the local support vector machine regression model. The experimental results show that the local support vector machine prediction method whose neighbouring points are optimized can effectively predict the small-time scale traffic measurement data and can reproduce the statistical features of real traffic measurements.
文摘Choosing optimal parameters for support vector regression (SVR) is an important step in SVR. design, which strongly affects the pefformance of SVR. In this paper, based on the analysis of influence of SVR parameters on generalization error, a new approach with two steps is proposed for selecting SVR parameters, First the kernel function and SVM parameters are optimized roughly through genetic algorithm, then the kernel parameter is finely adjusted by local linear search, This approach has been successfully applied to the prediction model of the sulfur content in hot metal. The experiment results show that the proposed approach can yield better generalization performance of SVR than other methods,
基金supported by National Natural Science Foundation of China (Grant No.60572007)National Basic Research Program of China(973 Program,Grant No.613580202)
文摘Metamodeling techniques have been used in robust optimization to reduce the high computational cost of the uncertainty analysis and improve the performance of robust optimization problems with computationally expensive simulation models. Existing metamodels main focus on polynomial regression(PR), neural networks(NN) and Kriging models, these metamodels are not well suited for large-scale robust optimization problems with small size training sets and high nonlinearity. To address the problem, a reduced approximation model technique based on support vector regression(SVR) is introduced in order to improve the accuracy of metamodels. A robust optimization method based on SVR is presented for problems that involve high dimension and nonlinear. First appropriate design parameter samples are selected by experimental design theories, then the response samples are obtained from the simulations such as finite element analysis, the SVR metamodel is constructed and treated as the mean and the variance of the objective performance functions. Combining other constraints, the robust optimization model is formed which can be solved by genetic algorithm (GA). The applicability of the method developed is demonstrated using a case of two-bar structure system study. The performances of SVR were compared with those of PR, Kriging and back-propagation neural networks(BPNN), the comparison results show that the prediction accuracy of the SVR metamodel was higher than those of other metamodels under uncertainty. The robust optimization solutions are near to the real result, and the proposed method is found to be accurate and efficient for robust optimization. This reaserch provides an efficient method for robust optimization problems with complex structure.
基金supported by the National Natural Science Foundation of China(61172127)the Natural Science Foundation of Anhui Province(1408085MF121)
文摘Removal of cloud cover on the satellite remote sensing image can effectively improve the availability of remote sensing images. For thin cloud cover, support vector value contourlet transform is used to achieve multi-scale decomposition of the area of thin cloud cover on remote sensing images. Through enhancing coefficients of high frequency and suppressing coefficients of low frequency, the thin cloud is removed. For thick cloud cover, if the areas of thick cloud cover on multi-source or multi-temporal remote sensing images do not overlap, the multi-output support vector regression learning method is used to remove this kind of thick clouds. If the thick cloud cover areas overlap, by using the multi-output learning of the surrounding areas to predict the surface features of the overlapped thick cloud cover areas, this kind of thick cloud is removed. Experimental results show that the proposed cloud removal method can effectively solve the problems of the cloud overlapping and radiation difference among multi-source images. The cloud removal image is clear and smooth.
基金supported by the National Natural Science Foundation of China (61074127)
文摘As the solutions of the least squares support vector regression machine (LS-SVRM) are not sparse, it leads to slow prediction speed and limits its applications. The defects of the ex- isting adaptive pruning algorithm for LS-SVRM are that the training speed is slow, and the generalization performance is not satis- factory, especially for large scale problems. Hence an improved algorithm is proposed. In order to accelerate the training speed, the pruned data point and fast leave-one-out error are employed to validate the temporary model obtained after decremental learning. The novel objective function in the termination condition which in- volves the whole constraints generated by all training data points and three pruning strategies are employed to improve the generali- zation performance. The effectiveness of the proposed algorithm is tested on six benchmark datasets. The sparse LS-SVRM model has a faster training speed and better generalization performance.
文摘Prediction of primary quality variables in real time with adaptation capability for varying process conditions is a critical task in process industries.This article focuses on the development of non-linear adaptive soft sensors for prediction of naphtha initial boiling point(IBP)and end boiling point(EBP)in crude distillation unit.In this work,adaptive inferential sensors with linear and non-linear local models are reported based on recursive just in time learning(JITL)approach.The different types of local models designed are locally weighted regression(LWR),multiple linear regression(MLR),partial least squares regression(PLS)and support vector regression(SVR).In addition to model development,the effect of relevant dataset size on model prediction accuracy and model computation time is also investigated.Results show that the JITL model based on support vector regression with iterative single data algorithm optimization(ISDA)local model(JITL-SVR:ISDA)yielded best prediction accuracy in reasonable computation time.
文摘A novel data-driven, soft sensor based on support vector regression (SVR) integrated with a data compression technique was developed to predict the product quality for the hydrodesulfurization (HDS) process. A wide range of experimental data was taken from a HDS setup to train and test the SVR model. Hyper-parameter tuning is one of the main challenges to improve predictive accuracy of the SVR model. Therefore, a hybrid approach using a combination of genetic algorithm (GA) and sequential quadratic programming (SQP) methods (GA-SQP) was developed. Performance of different optimization algorithms including GA-SQP, GA, pattern search (PS), and grid search (GS) indicated that the best average absolute relative error (AARE), squared correlation coefficient (R2), and computation time (CT) (AARE = 0.0745, R2 = 0.997 and CT = 56 s) was accomplished by the hybrid algorithm. Moreover, to reduce the CT and improve the accuracy of the SVR model, the vector quantization (VQ) technique was used. The results also showed that the VQ technique can decrease the training time and improve prediction performance of the SVR model. The proposed method can provide a robust, soft sensor in a wide range of sulfur contents with good accuracy.
基金Sponsored by the Projects of International Cooperation and Exchange of the National Natural Science Foundation of China(Grant No.51561135003)the Scientific Research Foundation of Graduated School of Southeast University(Grant No.YBJJ1842)
文摘In order to accurately predict bus travel time, a hybrid model based on combining wavelet transform technique with support vector regression(WT-SVR) model is employed. In this model, wavelet decomposition is used to extract important information of data at different levels and enhances the forecasting ability of the model. After wavelet transform different components are forecasted by their corresponding SVR predictors. The final prediction result is obtained by the summation of the predicted results for each component. The proposed hybrid model is examined by the data of bus route No.550 in Nanjing, China. The performance of WT-SVR model is evaluated by mean absolute error(MAE), mean absolute percent error(MAPE) and relative mean square error(RMSE), and also compared to regular SVR and ANN models. The results show that the prediction method based on wavelet transform and SVR has better tracking ability and dynamic behavior than regular SVR and ANN models. The forecasting performance is remarkably improved to obtain within 6% MAPE for testing section Ⅰ and 8% MAPE for testing section Ⅱ, which proves that the suggested approach is feasible and applicable in bus travel time prediction.
基金Under the auspices of National Natural Science Foundation of China (No. 40671133)Fundamental Research Funds for the Central Universities (No. GK200902015)
文摘This paper proposed a semi-supervised regression model with co-training algorithm based on support vector machine, which was used for retrieving water quality variables from SPOT 5 remote sensing data. The model consisted of two support vector regressors (SVRs). Nonlinear relationship between water quality variables and SPOT 5 spectrum was described by the two SVRs, and semi-supervised co-training algorithm for the SVRs was es-tablished. The model was used for retrieving concentrations of four representative pollution indicators―permangan- ate index (CODmn), ammonia nitrogen (NH3-N), chemical oxygen demand (COD) and dissolved oxygen (DO) of the Weihe River in Shaanxi Province, China. The spatial distribution map for those variables over a part of the Weihe River was also produced. SVR can be used to implement any nonlinear mapping readily, and semi-supervis- ed learning can make use of both labeled and unlabeled samples. By integrating the two SVRs and using semi-supervised learning, we provide an operational method when paired samples are limited. The results show that it is much better than the multiple statistical regression method, and can provide the whole water pollution condi-tions for management fast and can be extended to hyperspectral remote sensing applications.
基金Project supported by the Shanghai Natural Science Foundation (Grant No.08ZR1408300)the Shanghai Leading Academic Discipline Project (Grant No.S30108)
文摘A new customization approach based on support vector regression (SVR) is proposed to obtain individual headrelated impulse response (HRIR) without complex measurement and special equipment. Principal component analysis (PCA) is first applied to obtain a few principal components and corresponding weight vectors correlated with individual anthropometric parameters. Then the weight vectors act as output of the nonlinear regression model. Some measured anthropometric parameters are selected as input of the model according to the correlation coefficients between the parameters and the weight vectors. After the regression model is learned from the training data, the individual HRIR can be predicted based on the measured anthropometric parameters. Compared with a back-propagation neural network (BPNN) for nonlinear regression, better generalization and prediction performance for small training samples can be obtained using the proposed PCA-SVR algorithm.