By introducing Rough Set Theory and the principle of Support vector machine,a gear fault diagnosis method based on them is proposed.Firstly,diagnostic decision-making is reduced based on rough set theory,and the noise...By introducing Rough Set Theory and the principle of Support vector machine,a gear fault diagnosis method based on them is proposed.Firstly,diagnostic decision-making is reduced based on rough set theory,and the noise and redundancy in the sample are removed,then,according to the chosen reduction,a support vector machine multi-classifier is designed for gear fault diagnosis.Therefore,SVM’training data can be reduced and running speed can quicken.Test shows its accuracy and effi- ciency of gear fault diagnosis.展开更多
Machine learning method has been widely used in various geotechnical engineering risk analysis in recent years. However, the overfitting problem often occurs due to the small number of samples obtained in history. Thi...Machine learning method has been widely used in various geotechnical engineering risk analysis in recent years. However, the overfitting problem often occurs due to the small number of samples obtained in history. This paper proposes the FuzzySVM(support vector machine) geotechnical engineering risk analysis method based on the Bayesian network. The proposed method utilizes the fuzzy set theory to build a Bayesian network to reflect prior knowledge, and utilizes the SVM to build a Bayesian network to reflect historical samples. Then a Bayesian network for evaluation is built in Bayesian estimation method by combining prior knowledge with historical samples. Taking seismic damage evaluation of slopes as an example, the steps of the method are stated in detail. The proposed method is used to evaluate the seismic damage of 96 slopes along roads in the area affected by the Wenchuan earthquake. The evaluation results show that the method can solve the overfitting problem, which often occurs if the machine learning methods are used to evaluate risk of geotechnical engineering, and the performance of the method is much better than that of the previous machine learning methods. Moreover,the proposed method can also effectively evaluate various geotechnical engineering risks in the absence of some influencing factors.展开更多
This paper presents a novel method for radar emitter signal recognition. First, wavelet packet transform (WPT) is introduced to extract features from radar emitter signals. Then, rough set theory is used to select t...This paper presents a novel method for radar emitter signal recognition. First, wavelet packet transform (WPT) is introduced to extract features from radar emitter signals. Then, rough set theory is used to select the optimal feature subset with good discriminability from original feature set, and support vector machines (SVMs) are employed to design classifiers. A large number of experimental results show that the proposed method achieves very high recognition rates for 9 radar emitter signals in a wide range of signal-to-noise rates, and proves a feasible and valid method.展开更多
The rough set-genetic support vector machine(SVM) model is applied to supply chain performance evaluation. First, the rough set theory is used to remove the redundant factors that affect the performance evaluation of ...The rough set-genetic support vector machine(SVM) model is applied to supply chain performance evaluation. First, the rough set theory is used to remove the redundant factors that affect the performance evaluation of supply chain to obtain the core influencing factors. Then the support vector machine is used to extract the core influencing factors to predict the level of supply chain performance. In the process of SVM classification, the genetic algorithm is used to optimize the parameters of the SVM algorithm to obtain the best parameter model, and then the supply chain performance evaluation level is predicted. Finally, an example is used to predict this model, and compared with the result of using only rough set-support vector machine to predict. The results show that the method of rough set-genetic support vector machine can predict the level of supply chain performance more accurately and the prediction result is more realistic, which is a scientific and feasible method.展开更多
The manuscript presents an augmented Lagrangian—fast projected gradient method (ALFPGM) with an improved scheme of working set selection, pWSS, a decomposition based algorithm for training support vector classificati...The manuscript presents an augmented Lagrangian—fast projected gradient method (ALFPGM) with an improved scheme of working set selection, pWSS, a decomposition based algorithm for training support vector classification machines (SVM). The manuscript describes the ALFPGM algorithm, provides numerical results for training SVM on large data sets, and compares the training times of ALFPGM and Sequential Minimal Minimization algorithms (SMO) from Scikit-learn library. The numerical results demonstrate that ALFPGM with the improved working selection scheme is capable of training SVM with tens of thousands of training examples in a fraction of the training time of some widely adopted SVM tools.展开更多
A support vector machine time series forecasting model based on rough set data preprocessing was proposed by combining rough set attribute reduction and support vector machine regression algorithm. First, remove the r...A support vector machine time series forecasting model based on rough set data preprocessing was proposed by combining rough set attribute reduction and support vector machine regression algorithm. First, remove the redundant attribute for forecasting from condition attribute by rough set method; then use the minimum condition attribute set obtained after the reduction and the corresponding initial data, reform a new training sample set which only retain the important attributes influencing the forecasting accuracy; study and train the support vector machine with the training sample obtained after reduction, and then input the reformed testing sample set according to the minimum condition attribute and corresponding initial data. The model was tested and the mapping relation was got between the condition attribute and forecasting variable. Eventually, power supply and demand were forecasted in this model. The average absolute error rates of power consumption of the whole society and yearly maximum load are respectively 14.21% and 13.23%. It shows that RS-SVM time series forecasting model has high forecasting accuracy.展开更多
This paper presents keystroke dynamics based authentication system using the information set concept. Two types of membership functions (MFs) are computed: one based on the timing features of all the samples and anoth...This paper presents keystroke dynamics based authentication system using the information set concept. Two types of membership functions (MFs) are computed: one based on the timing features of all the samples and another based on the timing features of a single sample. These MFs lead to two types of information components (spatial and temporal) which are concatenated and modified to produce different feature types. Two Component Information Set (TCIS) is proposed for keystroke dynamics based user authentication. The keystroke features are converted into TCIS features which are then classified by SVM, Random Forest and proposed Convex Entropy Based Hanman Classifier. The TCIS features are capable of representing the spatial and temporal uncertainties. The performance of the proposed features is tested on CMU benchmark dataset in terms of error rates (FAR, FRR, EER) and accuracy of the features. In addition, the proposed features are also tested on Android Touch screen based Mobile Keystroke Dataset. The TCIS features improve the performance and give lower error rates and better accuracy than that of the existing features in literature.展开更多
文摘By introducing Rough Set Theory and the principle of Support vector machine,a gear fault diagnosis method based on them is proposed.Firstly,diagnostic decision-making is reduced based on rough set theory,and the noise and redundancy in the sample are removed,then,according to the chosen reduction,a support vector machine multi-classifier is designed for gear fault diagnosis.Therefore,SVM’training data can be reduced and running speed can quicken.Test shows its accuracy and effi- ciency of gear fault diagnosis.
基金supported by the National Key Research and Development Program (Grant No. 2017YFC0504901)Sichuan Traffic Construction Science and Technology Project(Grant No. 2016B2–2)Doctoral Innovation Fund Program of Southwest Jiaotong University(Grant No. D-CX201804)
文摘Machine learning method has been widely used in various geotechnical engineering risk analysis in recent years. However, the overfitting problem often occurs due to the small number of samples obtained in history. This paper proposes the FuzzySVM(support vector machine) geotechnical engineering risk analysis method based on the Bayesian network. The proposed method utilizes the fuzzy set theory to build a Bayesian network to reflect prior knowledge, and utilizes the SVM to build a Bayesian network to reflect historical samples. Then a Bayesian network for evaluation is built in Bayesian estimation method by combining prior knowledge with historical samples. Taking seismic damage evaluation of slopes as an example, the steps of the method are stated in detail. The proposed method is used to evaluate the seismic damage of 96 slopes along roads in the area affected by the Wenchuan earthquake. The evaluation results show that the method can solve the overfitting problem, which often occurs if the machine learning methods are used to evaluate risk of geotechnical engineering, and the performance of the method is much better than that of the previous machine learning methods. Moreover,the proposed method can also effectively evaluate various geotechnical engineering risks in the absence of some influencing factors.
文摘This paper presents a novel method for radar emitter signal recognition. First, wavelet packet transform (WPT) is introduced to extract features from radar emitter signals. Then, rough set theory is used to select the optimal feature subset with good discriminability from original feature set, and support vector machines (SVMs) are employed to design classifiers. A large number of experimental results show that the proposed method achieves very high recognition rates for 9 radar emitter signals in a wide range of signal-to-noise rates, and proves a feasible and valid method.
文摘The rough set-genetic support vector machine(SVM) model is applied to supply chain performance evaluation. First, the rough set theory is used to remove the redundant factors that affect the performance evaluation of supply chain to obtain the core influencing factors. Then the support vector machine is used to extract the core influencing factors to predict the level of supply chain performance. In the process of SVM classification, the genetic algorithm is used to optimize the parameters of the SVM algorithm to obtain the best parameter model, and then the supply chain performance evaluation level is predicted. Finally, an example is used to predict this model, and compared with the result of using only rough set-support vector machine to predict. The results show that the method of rough set-genetic support vector machine can predict the level of supply chain performance more accurately and the prediction result is more realistic, which is a scientific and feasible method.
文摘The manuscript presents an augmented Lagrangian—fast projected gradient method (ALFPGM) with an improved scheme of working set selection, pWSS, a decomposition based algorithm for training support vector classification machines (SVM). The manuscript describes the ALFPGM algorithm, provides numerical results for training SVM on large data sets, and compares the training times of ALFPGM and Sequential Minimal Minimization algorithms (SMO) from Scikit-learn library. The numerical results demonstrate that ALFPGM with the improved working selection scheme is capable of training SVM with tens of thousands of training examples in a fraction of the training time of some widely adopted SVM tools.
基金Project(70373017) supported by the National Natural Science Foundation of China
文摘A support vector machine time series forecasting model based on rough set data preprocessing was proposed by combining rough set attribute reduction and support vector machine regression algorithm. First, remove the redundant attribute for forecasting from condition attribute by rough set method; then use the minimum condition attribute set obtained after the reduction and the corresponding initial data, reform a new training sample set which only retain the important attributes influencing the forecasting accuracy; study and train the support vector machine with the training sample obtained after reduction, and then input the reformed testing sample set according to the minimum condition attribute and corresponding initial data. The model was tested and the mapping relation was got between the condition attribute and forecasting variable. Eventually, power supply and demand were forecasted in this model. The average absolute error rates of power consumption of the whole society and yearly maximum load are respectively 14.21% and 13.23%. It shows that RS-SVM time series forecasting model has high forecasting accuracy.
文摘This paper presents keystroke dynamics based authentication system using the information set concept. Two types of membership functions (MFs) are computed: one based on the timing features of all the samples and another based on the timing features of a single sample. These MFs lead to two types of information components (spatial and temporal) which are concatenated and modified to produce different feature types. Two Component Information Set (TCIS) is proposed for keystroke dynamics based user authentication. The keystroke features are converted into TCIS features which are then classified by SVM, Random Forest and proposed Convex Entropy Based Hanman Classifier. The TCIS features are capable of representing the spatial and temporal uncertainties. The performance of the proposed features is tested on CMU benchmark dataset in terms of error rates (FAR, FRR, EER) and accuracy of the features. In addition, the proposed features are also tested on Android Touch screen based Mobile Keystroke Dataset. The TCIS features improve the performance and give lower error rates and better accuracy than that of the existing features in literature.