To investigate the interaction of the bolt-reinforced rock and the surface support,an analytical model of the convergence-confinement type is proposed,considering the sequential installation of the fully grouted rockb...To investigate the interaction of the bolt-reinforced rock and the surface support,an analytical model of the convergence-confinement type is proposed,considering the sequential installation of the fully grouted rockbolts and the surface support.The rock mass is assumed to be elastic-brittle-plastic material,obeying the linear Mohr-Coulomb criterion or the non-linear Hoek-Brown criterion.According to the strain states of the tunnel wall at bolt and surface support installation and the relative magnitude between the bolt length and the plastic depth during the whole process,six cases are categorized upon solving the problem.Each case is divided into three stages due to the different effects of the active rockbolts and the passive surface support.The fictitious pressure is introduced to quantify the threedimensional(3D)effect of the tunnel face,and thus,the actual physical location along the tunnel axis of the analytical section can be considered.By using the bolt-rock strain compatibility and the rocksurface support displacement compatibility conditions,the solutions of longitudinal tunnel displacement and the reaction pressure of surface support along the tunnel axis are obtained.The proposed analytical solutions are validated by a series of 3D numerical simulations.Extensive parametric studies are conducted to examine the effect of the typical parameters of rockbolts and surface support on the tunnel displacement and the reaction pressure of the surface support under different rock conditions.The results show that the rockbolts are more effective in controlling the tunnel displacement than the surface support,which should be installed as soon as possible with a suitable length.For tunnels excavated in weak rocks or with restricted displacement control requirements,the surface support should also be installed or closed timely with a certain stiffness.The proposed method provides a convenient alternative approach for the optimization of rockbolts and surface support at the preliminary stage of tunnel design.展开更多
The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct ...The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct virtual elements and stress servo control to approximately replace the hydraulic support problem,this paper establishes a new numerical model of hydraulic support with the same working characteristics as the actual hydraulic support by integrating numerical simulation software Rhino,Griddle and FLAC3D,which can realize the simulation of different working conditions.Based on this model,the influence mechanism of the supporting strength of hydraulic support on surrounding rock stress regulation and coal stability in front of the top coal caving face in extra thick coal seam were researched.Firstly,under different support intensity,the abutment pressure of the bearing coal and the coal in front of it presents the “three-stage”evolution characteristics.The influence range of support intensity is 15%–30%.Secondly,1.5 MPa is the upper limit of impact that the support strength can have on the front coal failure area.Thirdly,within a displacement range of 2.76 m from the coal wall,a support strength of1.5 MPa provides optimal control of the horizontal displacement of the coal.展开更多
Aqueous-phase reforming(APR)is an attractive process to produce bio-based hydrogen from waste biomass streams,during which the catalyst stability is often challenged due to the harsh reaction conditions.In this work,t...Aqueous-phase reforming(APR)is an attractive process to produce bio-based hydrogen from waste biomass streams,during which the catalyst stability is often challenged due to the harsh reaction conditions.In this work,three Pt-based catalysts supported on C,AlO(OH),and ZrO_(2)were investigated for the APR of hydroxyacetone solution in afixed bed reactor at 225℃and 35 bar.Among them,the Pt/C catalyst showed the highest turnover frequency for H_(2)production(TOF of 8.9 molH_(2)molPt^(-1)min^(-1))and the longest catalyst stability.Over the AlO(OH)and ZrO_(2)supported Pt catalysts,the side reactions consuming H_(2),formation of coke,and Pt sintering result in a low H_(2)production and the fast catalyst deactivation.The proposed reaction pathways suggest that a promising APR catalyst should reform all oxygenates in the aqueous phase,minimize the hydrogenation of the oxygenates,maximize the WGS reaction,and inhibit the condensation and coking reactions for maximizing the hydrogen yield and a stable catalytic performance.展开更多
Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticle...Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticles(NPs)on nitrogen-doped carbon;synthesized by using F127 as a stabilizer,as well as chitosan as a carbon and nitrogen source.The Pd/NCF catalyst was efficient and recyclable for oxidative carbonylation of phenol to diphenyl carbonate,exhibiting higher stability than Pd/NC prepared without F127 addition.The hydrogen bond between chitosan(CTS)and F127 was enhanced by F127,which anchored the N in the free amino group,increasing the N content of the carbon material and ensuring that the support could provide sufficient N sites for the deposition of Pd NPs.This process helped to improve metal dispersion.The increased metal-support interaction,which limits the leaching and coarsening of Pd NPs,improves the stability of the Pd/NCF catalyst.Furthermore,density functional theory calculations indicated that pyridine N stabilized the Pd^(2+)species,significantly inhibiting the loss of Pd^(2+)in Pd/NCF during the reaction process.This work provides a promising avenue towards enhancing the stability of nitrogen-doped carbon-supported metal catalysts.展开更多
To enhance flow stability and reduce hydrodynamic noise caused by fluctuating pressure,a quasiperiodic elastic support skin composed of flexible walls and elastic support elements is proposed for fluid noise reduction...To enhance flow stability and reduce hydrodynamic noise caused by fluctuating pressure,a quasiperiodic elastic support skin composed of flexible walls and elastic support elements is proposed for fluid noise reduction.The arrangement of the elastic support element is determined by the equivalent periodic distance and quasi-periodic coefficient.In this paper,a dynamic model of skin in a fluid environment is established.The influence of equivalent periodic distance and quasi-periodic coefficient on flow stability is investigated.The results suggest that arranging the elastic support elements in accordance with the quasi-periodic law can effectively enhance flow stability.Meanwhile,the hydrodynamic noise calculation results demonstrate that the skin exhibits excellent noise reduction performance,with reductions of 10 dB in the streamwise direction,11 dB in the spanwise direction,and 10 dB in the normal direction.The results also demonstrate that the stability analysis method can serve as a diagnostic tool for flow fields and guide the design of noise reduction structures.展开更多
In recent years,deep learning-based signal recognition technology has gained attention and emerged as an important approach for safeguarding the electromagnetic environment.However,training deep learning-based classif...In recent years,deep learning-based signal recognition technology has gained attention and emerged as an important approach for safeguarding the electromagnetic environment.However,training deep learning-based classifiers on large signal datasets with redundant samples requires significant memory and high costs.This paper proposes a support databased core-set selection method(SD)for signal recognition,aiming to screen a representative subset that approximates the large signal dataset.Specifically,this subset can be identified by employing the labeled information during the early stages of model training,as some training samples are labeled as supporting data frequently.This support data is crucial for model training and can be found using a border sample selector.Simulation results demonstrate that the SD method minimizes the impact on model recognition performance while reducing the dataset size,and outperforms five other state-of-the-art core-set selection methods when the fraction of training sample kept is less than or equal to 0.3 on the RML2016.04C dataset or 0.5 on the RML22 dataset.The SD method is particularly helpful for signal recognition tasks with limited memory and computing resources.展开更多
The control of large deformation problems in layered soft rock tunnels needs to solve urgently.The roof problem is particularly severe among the deformation issues in tunnels.This study first analyzes the asymmetric d...The control of large deformation problems in layered soft rock tunnels needs to solve urgently.The roof problem is particularly severe among the deformation issues in tunnels.This study first analyzes the asymmetric deformation modes in layered soft rock tunnels with large deformations.Subsequently,we construct a mechanical model under ideal conditions for controlling the roof of layered soft rock tunnels through high preload with the support of NPR anchor cables.The prominent roles of long and short NPR anchor cables in the support system are also analyzed.The results indicate the significance of high preload in controlling the roof of layered soft rock tunnels.The short NPR anchor cables effectively improve the integrity of the stratified soft rock layers,while the long NPR anchor cables effectively mobilize the self-bearing capacity of deep-stable rock layers.Finally,the high-preload support method with NPR anchor cables is validated to have a good effect on controlling large deformations in layered soft rock tunnels through field monitoring data.展开更多
In underground engineering with complex conditions,the bolt(cable)anchorage support system is in an environment where static and dynamic stresses coexist,under the action of geological conditions such as high stresses...In underground engineering with complex conditions,the bolt(cable)anchorage support system is in an environment where static and dynamic stresses coexist,under the action of geological conditions such as high stresses and strong disturbances and construction conditions such as the application of high prestress.It is essential to study the support components performance under dynamic-static coupling conditions.Based on this,a multi-functional anchorage support dynamic-static coupling performance test system(MAC system)is developed,which can achieve 7 types of testing functions,including single component performance,anchored net performance,anchored rock performance and so on.The bolt and cable mechanical tests are conducted by MAC system under different prestress levels.The results showed that compared to the non-prestress condition,the impact resistance performance of prestressed bolts(cables)is significantly reduced.In the prestress range of 50–160 k N,the maximum reduction rate of impact energy resisted by different types of bolts is 53.9%–61.5%compared to non-prestress condition.In the prestress range of 150–300 k N,the impact energy resisted by high-strength cable is reduced by76.8%–84.6%compared to non-prestress condition.The MAC system achieves dynamic-static coupling performance test,which provide an effective means for the design of anchorage support system.展开更多
Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant no...Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant nonsingular terminal sliding mode control method based on support vector machine(SVM)is proposed.A SVM is designed to estimate the fault by off-line learning from small sample data with solving convex quadratic programming method and is introduced into a high-gain observer,so as to improve the state estimation and fault detection accuracy when the fault occurs.The state estimation value of the observer is used for state reconfiguration.A novel nonsingular terminal sliding mode surface is designed,and Lyapunov theorem is used to derive a parameter adaptation law and a control law.It is guaranteed that the proposed controller can achieve asymptotical stability which is superior to many advanced fault-tolerant controllers.In addition,the parameter estimation also can help to diagnose the system faults because the faults can be reflected by the parameters variation.Extensive comparative simulation and experimental results illustrate the effectiveness and advancement of the proposed controller compared with several other main-stream controllers.展开更多
The distribution of data has a significant impact on the results of classification.When the distribution of one class is insignificant compared to the distribution of another class,data imbalance occurs.This will resu...The distribution of data has a significant impact on the results of classification.When the distribution of one class is insignificant compared to the distribution of another class,data imbalance occurs.This will result in rising outlier values and noise.Therefore,the speed and performance of classification could be greatly affected.Given the above problems,this paper starts with the motivation and mathematical representing of classification,puts forward a new classification method based on the relationship between different classification formulations.Combined with the vector characteristics of the actual problem and the choice of matrix characteristics,we firstly analyze the orderly regression to introduce slack variables to solve the constraint problem of the lone point.Then we introduce the fuzzy factors to solve the problem of the gap between the isolated points on the basis of the support vector machine.We introduce the cost control to solve the problem of sample skew.Finally,based on the bi-boundary support vector machine,a twostep weight setting twin classifier is constructed.This can help to identify multitasks with feature-selected patterns without the need for additional optimizers,which solves the problem of large-scale classification that can’t deal effectively with the very low category distribution gap.展开更多
Lightweight thin-walled structures with lattice infill are widely desired in satellite for their high stiffness-to-weight ratio and superior buckling strength resulting fromthe sandwich effect.Such structures can be f...Lightweight thin-walled structures with lattice infill are widely desired in satellite for their high stiffness-to-weight ratio and superior buckling strength resulting fromthe sandwich effect.Such structures can be fabricated bymetallic additive manufacturing technique,such as selective laser melting(SLM).However,the maximum dimensions of actual structures are usually in a sub-meter scale,which results in restrictions on their appliance in aerospace and other fields.In this work,a meter-scale thin-walled structure with lattice infill is designed for the fuel tank supporting component of the satellite by integrating a self-supporting lattice into the thickness optimization of the thin-wall.The designed structure is fabricated by SLM of AlSi10Mg and cold metal transfer welding technique.Quasi-static mechanical tests and vibration tests are both conducted to verify the mechanical strength of the designed large-scale lattice thin-walled structure.The experimental results indicate that themeter-scale thin-walled structure with lattice infill could meet the dimension and lightweight requirements of most spacecrafts.展开更多
The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques we...The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques were applied to identify the most important input parameters for mapping debris flow susceptibility in the southern mountain area of Chengde City in Hebei Province,China,by using machine learning algorithms.In total,133 historical debris flow records and 16 related factors were selected.The support vector machine(SVM)was first used as the base classifier,and then a hybrid model was introduced by a two-step process.First,the particle swarm optimization(PSO)algorithm was employed to select the SVM model hyperparameters.Second,two feature selection algorithms,namely principal component analysis(PCA)and PSO,were integrated into the PSO-based SVM model,which generated the PCA-PSO-SVM and FS-PSO-SVM models,respectively.Three statistical metrics(accuracy,recall,and specificity)and the area under the receiver operating characteristic curve(AUC)were employed to evaluate and validate the performance of the models.The results indicated that the feature selection-based models exhibited the best performance,followed by the PSO-based SVM and SVM models.Moreover,the performance of the FS-PSO-SVM model was better than that of the PCA-PSO-SVM model,showing the highest AUC,accuracy,recall,and specificity values in both the training and testing processes.It was found that the selection of optimal features is crucial to improving the reliability of debris flow susceptibility assessment results.Moreover,the PSO algorithm was found to be not only an effective tool for hyperparameter optimization,but also a useful feature selection algorithm to improve prediction accuracies of debris flow susceptibility by using machine learning algorithms.The high and very high debris flow susceptibility zone appropriately covers 38.01%of the study area,where debris flow may occur under intensive human activities and heavy rainfall events.展开更多
The load-bearing performance(LBP)of pumpable supports(PPS)is crucial for the stability of longwall pre-driven recovery room(PRR)surrounding rock.However,the unbalanced bearing coefficient(UBC)of the PPS(undertaking un...The load-bearing performance(LBP)of pumpable supports(PPS)is crucial for the stability of longwall pre-driven recovery room(PRR)surrounding rock.However,the unbalanced bearing coefficient(UBC)of the PPS(undertaking unequal load along the mining direction)has not been investigated.A mechanical model of the PRR was established,considering the main roof cantilever beam structure,to derive an assessment formula for the load,the failure criteria,and the UBC of the PPS.Subsequently,the generation mechanisms,and influencing factors of the UBC were revealed.Global sensitivity analysis shows that the main roof hanging length(l_(2))and the spacing between the PPS(r)significantly impact the UBC.A novel design of the PPS and the coupling control technology were proposed and applied to reduce the UBC of the PPS in the adjacent longwall PRR.Monitor results showed no failure of the PPS at the test site,with the UBC(ζ)reduced to 1.1 consistent with the design value(1.15)basically,fully utilizing the collaborative LBP of the PPS.Finally,the maximum roof-to-floor convergence of the PRR was 234 mm,effectively controlling the stability of the surrounding rock of the PRR and ensuring the mining equipment recovery.展开更多
With the widespread data collection and processing,privacy-preserving machine learning has become increasingly important in addressing privacy risks related to individuals.Support vector machine(SVM)is one of the most...With the widespread data collection and processing,privacy-preserving machine learning has become increasingly important in addressing privacy risks related to individuals.Support vector machine(SVM)is one of the most elementary learning models of machine learning.Privacy issues surrounding SVM classifier training have attracted increasing attention.In this paper,we investigate Differential Privacy-compliant Federated Machine Learning with Dimensionality Reduction,called FedDPDR-DPML,which greatly improves data utility while providing strong privacy guarantees.Considering in distributed learning scenarios,multiple participants usually hold unbalanced or small amounts of data.Therefore,FedDPDR-DPML enables multiple participants to collaboratively learn a global model based on weighted model averaging and knowledge aggregation and then the server distributes the global model to each participant to improve local data utility.Aiming at high-dimensional data,we adopt differential privacy in both the principal component analysis(PCA)-based dimensionality reduction phase and SVM classifiers training phase,which improves model accuracy while achieving strict differential privacy protection.Besides,we train Differential privacy(DP)-compliant SVM classifiers by adding noise to the objective function itself,thus leading to better data utility.Extensive experiments on three high-dimensional datasets demonstrate that FedDPDR-DPML can achieve high accuracy while ensuring strong privacy protection.展开更多
Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunne...Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.展开更多
Algorithms for steganography are methods of hiding data transfers in media files.Several machine learning architectures have been presented recently to improve stego image identification performance by using spatial i...Algorithms for steganography are methods of hiding data transfers in media files.Several machine learning architectures have been presented recently to improve stego image identification performance by using spatial information,and these methods have made it feasible to handle a wide range of problems associated with image analysis.Images with little information or low payload are used by information embedding methods,but the goal of all contemporary research is to employ high-payload images for classification.To address the need for both low-and high-payload images,this work provides a machine-learning approach to steganography image classification that uses Curvelet transformation to efficiently extract characteristics from both type of images.Support Vector Machine(SVM),a commonplace classification technique,has been employed to determine whether the image is a stego or cover.The Wavelet Obtained Weights(WOW),Spatial Universal Wavelet Relative Distortion(S-UNIWARD),Highly Undetectable Steganography(HUGO),and Minimizing the Power of Optimal Detector(MiPOD)steganography techniques are used in a variety of experimental scenarios to evaluate the performance of the proposedmethod.Using WOW at several payloads,the proposed approach proves its classification accuracy of 98.60%.It exhibits its superiority over SOTA methods.展开更多
Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation.The stability control of automatically formed roadway is the key to the succ...Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation.The stability control of automatically formed roadway is the key to the successful application of the new method.In order to realize the stability control of the roadway surrounding rock,the mechanical model of the roof and rib support structure is established,and the influence mechanism of the automatically formed roadway parameters on the compound force is revealed.On this basis,the roof and rib support structure technology of confined lightweight concrete is proposed,and its mechanical tests under different eccentricity are carried out.The results show that the bearing capacity of confined lightweight concrete specimens is basically the same as that of ordinary confined concrete specimens.The bearing capacity of confined lightweight concrete specimens under different eccentricities is 1.95 times higher than those of U-shaped steel specimens.By comparing the test results with the theoretical calculated results of the confined concrete,the calculation method of the bearing capacity for the confined lightweight concrete structure is selected.The design method of confined lightweight concrete support structure is established,and is successfully applied in the extra-large mine,Ningtiaota Coal Mine,China.展开更多
The spontaneous bursts of electrical activity in the developing auditory system are derived from the periodic release of adenosine triphosphate(ATP)by supporting cells in the Kölliker’s organ.However,the mechani...The spontaneous bursts of electrical activity in the developing auditory system are derived from the periodic release of adenosine triphosphate(ATP)by supporting cells in the Kölliker’s organ.However,the mechanisms responsible for initiating spontaneous ATP release have not been determined.Our previous study revealed that telomerase reverse transcriptase(TERT)is expressed in the basilar membrane during the first postnatal week.Its role in cochlear development remains unclear.In this study,we investigated the expression and role of TERT in postnatal cochlea supporting cells.Our results revealed that in postnatal cochlear Kölliker’s organ supporting cells,TERT shifts from the nucleus into the cytoplasm over time.We found that the TERT translocation tendency in postnatal cochlear supporting cells in vitro coincided with that observed in vivo.Further analysis showed that TERT in the cytoplasm was mainly located in mitochondria in the absence of oxidative stress or apoptosis,suggesting that TERT in mitochondria plays roles other than antioxidant or anti-apoptotic functions.We observed increased ATP synthesis,release and activation of purine signaling systems in supporting cells during the first 10 postnatal days.The phenomenon that TERT translocation coincided with changes in ATP synthesis,release and activation of the purine signaling system in postnatal cochlear supporting cells suggested that TERT may be involved in regulating ATP release and activation of the purine signaling system.Our study provides a new research direction for exploring the spontaneous electrical activity of the cochlea during the early postnatal period.展开更多
Single-phase 25 kV traction networks of electrified alternating current(AC)railways create electromagnetic fields(EMFs)with significant levels of intensity.The most intense magnetic fields occur when short circuits ex...Single-phase 25 kV traction networks of electrified alternating current(AC)railways create electromagnetic fields(EMFs)with significant levels of intensity.The most intense magnetic fields occur when short circuits exist between the contact wire and rails or ground.Despite the short duration of exposure,they can adversely affect electronic devices and induce significant voltages in adjacent power lines,which is dangerous for operating personnel.Although numerous investigations have focused on modeling the EMF of traction networks and power lines,the challenge of determining the three-dimensional electromagnetic fields near metal supports during the flow of a short-circuit current through them is yet to be resolved.In this case,the field has a complex spatial structure that significantly complicates the calculations of intensities.This study proposes a methodology,algorithms,software,and digital models for determining the EMF in the described emergency scenarios.During the modeling process,the objects being studied were represented by segments of thin wires to analyze the distribution of the electric charge and calculate the intensities of the electric and magnetic fields.This approach was implemented in the Fazonord software,and the modeling results show a substantial increase in EMF levels close to the support,with a noticeable decrease in the levels as the distance from it increases.The procedure implemented in the commercial software Fazonord is universal and can be used to determine electromagnetic fields at any electrical power facility that includes live parts of limited length.Based on the proposed procedure,the EMF near the supports of overhead power lines and traction networks of various designs could be determined,the EMF levels at substations can be calculated,and the influence of metal structures located near traction networks,such as pedestrian crossings at railway stations,can be considered.展开更多
Accurately estimating blasting vibration during rock blasting is the foundation of blasting vibration management.In this study,Tuna Swarm Optimization(TSO),Whale Optimization Algorithm(WOA),and Cuckoo Search(CS)were u...Accurately estimating blasting vibration during rock blasting is the foundation of blasting vibration management.In this study,Tuna Swarm Optimization(TSO),Whale Optimization Algorithm(WOA),and Cuckoo Search(CS)were used to optimize two hyperparameters in support vector regression(SVR).Based on these methods,three hybrid models to predict peak particle velocity(PPV)for bench blasting were developed.Eighty-eight samples were collected to establish the PPV database,eight initial blasting parameters were chosen as input parameters for the predictionmodel,and the PPV was the output parameter.As predictive performance evaluation indicators,the coefficient of determination(R2),rootmean square error(RMSE),mean absolute error(MAE),and a10-index were selected.The normalizedmutual information value is then used to evaluate the impact of various input parameters on the PPV prediction outcomes.According to the research findings,TSO,WOA,and CS can all enhance the predictive performance of the SVR model.The TSO-SVR model provides the most accurate predictions.The performances of the optimized hybrid SVR models are superior to the unoptimized traditional prediction model.The maximum charge per delay impacts the PPV prediction value the most.展开更多
基金funding support from the Fundamental Research Funds for the Central Universities(Grant No.2023JBZY024)the National Natural Science Foundation of China(Grant Nos.52208382 and 52278387).
文摘To investigate the interaction of the bolt-reinforced rock and the surface support,an analytical model of the convergence-confinement type is proposed,considering the sequential installation of the fully grouted rockbolts and the surface support.The rock mass is assumed to be elastic-brittle-plastic material,obeying the linear Mohr-Coulomb criterion or the non-linear Hoek-Brown criterion.According to the strain states of the tunnel wall at bolt and surface support installation and the relative magnitude between the bolt length and the plastic depth during the whole process,six cases are categorized upon solving the problem.Each case is divided into three stages due to the different effects of the active rockbolts and the passive surface support.The fictitious pressure is introduced to quantify the threedimensional(3D)effect of the tunnel face,and thus,the actual physical location along the tunnel axis of the analytical section can be considered.By using the bolt-rock strain compatibility and the rocksurface support displacement compatibility conditions,the solutions of longitudinal tunnel displacement and the reaction pressure of surface support along the tunnel axis are obtained.The proposed analytical solutions are validated by a series of 3D numerical simulations.Extensive parametric studies are conducted to examine the effect of the typical parameters of rockbolts and surface support on the tunnel displacement and the reaction pressure of the surface support under different rock conditions.The results show that the rockbolts are more effective in controlling the tunnel displacement than the surface support,which should be installed as soon as possible with a suitable length.For tunnels excavated in weak rocks or with restricted displacement control requirements,the surface support should also be installed or closed timely with a certain stiffness.The proposed method provides a convenient alternative approach for the optimization of rockbolts and surface support at the preliminary stage of tunnel design.
基金supported by Distinguished Youth Funds of National Natural Science Foundation of China (No.51925402)National Natural Science Foundation of China (Nos.51904203 and 52174125)+4 种基金the China Postdoctoral Science Foundation (No.2021M702049)the Tencent Foundation or XPLORER PRIZEShanxi Science and Technology Major Project Funds (No.20201102004)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering (No.2021SX-TD001)Open Fund Research Project Supported by State Key Laboratory of Strata Intelligent Control and Green Mining Co-founded by Shandong Province and the Ministry of Science and Technology (No.SICGM202209)。
文摘The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct virtual elements and stress servo control to approximately replace the hydraulic support problem,this paper establishes a new numerical model of hydraulic support with the same working characteristics as the actual hydraulic support by integrating numerical simulation software Rhino,Griddle and FLAC3D,which can realize the simulation of different working conditions.Based on this model,the influence mechanism of the supporting strength of hydraulic support on surrounding rock stress regulation and coal stability in front of the top coal caving face in extra thick coal seam were researched.Firstly,under different support intensity,the abutment pressure of the bearing coal and the coal in front of it presents the “three-stage”evolution characteristics.The influence range of support intensity is 15%–30%.Secondly,1.5 MPa is the upper limit of impact that the support strength can have on the front coal failure area.Thirdly,within a displacement range of 2.76 m from the coal wall,a support strength of1.5 MPa provides optimal control of the horizontal displacement of the coal.
基金support from European Union Seventh Frame-work Programme(FP7/2007-2013 project SusFuelCat,grant No.310490)is acknowledged.
文摘Aqueous-phase reforming(APR)is an attractive process to produce bio-based hydrogen from waste biomass streams,during which the catalyst stability is often challenged due to the harsh reaction conditions.In this work,three Pt-based catalysts supported on C,AlO(OH),and ZrO_(2)were investigated for the APR of hydroxyacetone solution in afixed bed reactor at 225℃and 35 bar.Among them,the Pt/C catalyst showed the highest turnover frequency for H_(2)production(TOF of 8.9 molH_(2)molPt^(-1)min^(-1))and the longest catalyst stability.Over the AlO(OH)and ZrO_(2)supported Pt catalysts,the side reactions consuming H_(2),formation of coke,and Pt sintering result in a low H_(2)production and the fast catalyst deactivation.The proposed reaction pathways suggest that a promising APR catalyst should reform all oxygenates in the aqueous phase,minimize the hydrogenation of the oxygenates,maximize the WGS reaction,and inhibit the condensation and coking reactions for maximizing the hydrogen yield and a stable catalytic performance.
基金support by the National Natural Science Foundation of China(U21A20306,U20A20152)Natural Science Foundation of Hebei Province(B2022202077).
文摘Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticles(NPs)on nitrogen-doped carbon;synthesized by using F127 as a stabilizer,as well as chitosan as a carbon and nitrogen source.The Pd/NCF catalyst was efficient and recyclable for oxidative carbonylation of phenol to diphenyl carbonate,exhibiting higher stability than Pd/NC prepared without F127 addition.The hydrogen bond between chitosan(CTS)and F127 was enhanced by F127,which anchored the N in the free amino group,increasing the N content of the carbon material and ensuring that the support could provide sufficient N sites for the deposition of Pd NPs.This process helped to improve metal dispersion.The increased metal-support interaction,which limits the leaching and coarsening of Pd NPs,improves the stability of the Pd/NCF catalyst.Furthermore,density functional theory calculations indicated that pyridine N stabilized the Pd^(2+)species,significantly inhibiting the loss of Pd^(2+)in Pd/NCF during the reaction process.This work provides a promising avenue towards enhancing the stability of nitrogen-doped carbon-supported metal catalysts.
基金National Natural Science Foundation of China(Grant Nos.52075111,51775123)Fundamental Research Funds for the Central Universities(Grant No.3072022JC0701)。
文摘To enhance flow stability and reduce hydrodynamic noise caused by fluctuating pressure,a quasiperiodic elastic support skin composed of flexible walls and elastic support elements is proposed for fluid noise reduction.The arrangement of the elastic support element is determined by the equivalent periodic distance and quasi-periodic coefficient.In this paper,a dynamic model of skin in a fluid environment is established.The influence of equivalent periodic distance and quasi-periodic coefficient on flow stability is investigated.The results suggest that arranging the elastic support elements in accordance with the quasi-periodic law can effectively enhance flow stability.Meanwhile,the hydrodynamic noise calculation results demonstrate that the skin exhibits excellent noise reduction performance,with reductions of 10 dB in the streamwise direction,11 dB in the spanwise direction,and 10 dB in the normal direction.The results also demonstrate that the stability analysis method can serve as a diagnostic tool for flow fields and guide the design of noise reduction structures.
基金supported by National Natural Science Foundation of China(62371098)Natural Science Foundation of Sichuan Province(2023NSFSC1422)+1 种基金National Key Research and Development Program of China(2021YFB2900404)Central Universities of South west Minzu University(ZYN2022032).
文摘In recent years,deep learning-based signal recognition technology has gained attention and emerged as an important approach for safeguarding the electromagnetic environment.However,training deep learning-based classifiers on large signal datasets with redundant samples requires significant memory and high costs.This paper proposes a support databased core-set selection method(SD)for signal recognition,aiming to screen a representative subset that approximates the large signal dataset.Specifically,this subset can be identified by employing the labeled information during the early stages of model training,as some training samples are labeled as supporting data frequently.This support data is crucial for model training and can be found using a border sample selector.Simulation results demonstrate that the SD method minimizes the impact on model recognition performance while reducing the dataset size,and outperforms five other state-of-the-art core-set selection methods when the fraction of training sample kept is less than or equal to 0.3 on the RML2016.04C dataset or 0.5 on the RML22 dataset.The SD method is particularly helpful for signal recognition tasks with limited memory and computing resources.
基金financial support from the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(No.2019QZKK0708)the National Natural Science Foundation of China(No.41941018)the Special Fund of Yueqi Scholars(No.800015Z1207).
文摘The control of large deformation problems in layered soft rock tunnels needs to solve urgently.The roof problem is particularly severe among the deformation issues in tunnels.This study first analyzes the asymmetric deformation modes in layered soft rock tunnels with large deformations.Subsequently,we construct a mechanical model under ideal conditions for controlling the roof of layered soft rock tunnels through high preload with the support of NPR anchor cables.The prominent roles of long and short NPR anchor cables in the support system are also analyzed.The results indicate the significance of high preload in controlling the roof of layered soft rock tunnels.The short NPR anchor cables effectively improve the integrity of the stratified soft rock layers,while the long NPR anchor cables effectively mobilize the self-bearing capacity of deep-stable rock layers.Finally,the high-preload support method with NPR anchor cables is validated to have a good effect on controlling large deformations in layered soft rock tunnels through field monitoring data.
基金supported by the National Natural Science Foundation of China(Nos.51927807,52074164,42277174,42077267 and 42177130)the Natural Science Foundation of Shandong Province,China(No.ZR2020JQ23)China University of Mining and Technology(Beijing)Top Innovative Talent Cultivation Fund for Doctoral Students(No.BBJ2023048)。
文摘In underground engineering with complex conditions,the bolt(cable)anchorage support system is in an environment where static and dynamic stresses coexist,under the action of geological conditions such as high stresses and strong disturbances and construction conditions such as the application of high prestress.It is essential to study the support components performance under dynamic-static coupling conditions.Based on this,a multi-functional anchorage support dynamic-static coupling performance test system(MAC system)is developed,which can achieve 7 types of testing functions,including single component performance,anchored net performance,anchored rock performance and so on.The bolt and cable mechanical tests are conducted by MAC system under different prestress levels.The results showed that compared to the non-prestress condition,the impact resistance performance of prestressed bolts(cables)is significantly reduced.In the prestress range of 50–160 k N,the maximum reduction rate of impact energy resisted by different types of bolts is 53.9%–61.5%compared to non-prestress condition.In the prestress range of 150–300 k N,the impact energy resisted by high-strength cable is reduced by76.8%–84.6%compared to non-prestress condition.The MAC system achieves dynamic-static coupling performance test,which provide an effective means for the design of anchorage support system.
基金Supported by National Natural Science Foundation of China (Grant No.51975294)Fundamental Research Funds for the Central Universities of China (Grant No.30922010706)。
文摘Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant nonsingular terminal sliding mode control method based on support vector machine(SVM)is proposed.A SVM is designed to estimate the fault by off-line learning from small sample data with solving convex quadratic programming method and is introduced into a high-gain observer,so as to improve the state estimation and fault detection accuracy when the fault occurs.The state estimation value of the observer is used for state reconfiguration.A novel nonsingular terminal sliding mode surface is designed,and Lyapunov theorem is used to derive a parameter adaptation law and a control law.It is guaranteed that the proposed controller can achieve asymptotical stability which is superior to many advanced fault-tolerant controllers.In addition,the parameter estimation also can help to diagnose the system faults because the faults can be reflected by the parameters variation.Extensive comparative simulation and experimental results illustrate the effectiveness and advancement of the proposed controller compared with several other main-stream controllers.
基金Hebei Province Key Research and Development Project(No.20313701D)Hebei Province Key Research and Development Project(No.19210404D)+13 种基金Mobile computing and universal equipment for the Beijing Key Laboratory Open Project,The National Social Science Fund of China(17AJL014)Beijing University of Posts and Telecommunications Construction of World-Class Disciplines and Characteristic Development Guidance Special Fund “Cultural Inheritance and Innovation”Project(No.505019221)National Natural Science Foundation of China(No.U1536112)National Natural Science Foundation of China(No.81673697)National Natural Science Foundation of China(61872046)The National Social Science Fund Key Project of China(No.17AJL014)“Blue Fire Project”(Huizhou)University of Technology Joint Innovation Project(CXZJHZ201729)Industry-University Cooperation Cooperative Education Project of the Ministry of Education(No.201902218004)Industry-University Cooperation Cooperative Education Project of the Ministry of Education(No.201902024006)Industry-University Cooperation Cooperative Education Project of the Ministry of Education(No.201901197007)Industry-University Cooperation Collaborative Education Project of the Ministry of Education(No.201901199005)The Ministry of Education Industry-University Cooperation Collaborative Education Project(No.201901197001)Shijiazhuang science and technology plan project(236240267A)Hebei Province key research and development plan project(20312701D)。
文摘The distribution of data has a significant impact on the results of classification.When the distribution of one class is insignificant compared to the distribution of another class,data imbalance occurs.This will result in rising outlier values and noise.Therefore,the speed and performance of classification could be greatly affected.Given the above problems,this paper starts with the motivation and mathematical representing of classification,puts forward a new classification method based on the relationship between different classification formulations.Combined with the vector characteristics of the actual problem and the choice of matrix characteristics,we firstly analyze the orderly regression to introduce slack variables to solve the constraint problem of the lone point.Then we introduce the fuzzy factors to solve the problem of the gap between the isolated points on the basis of the support vector machine.We introduce the cost control to solve the problem of sample skew.Finally,based on the bi-boundary support vector machine,a twostep weight setting twin classifier is constructed.This can help to identify multitasks with feature-selected patterns without the need for additional optimizers,which solves the problem of large-scale classification that can’t deal effectively with the very low category distribution gap.
基金The authors are grateful for the support by National Key Research and Development Program of China(2021YFF0500300,2020YFB1708300)the National Natural Science Foundation of China(52205280,12172041).
文摘Lightweight thin-walled structures with lattice infill are widely desired in satellite for their high stiffness-to-weight ratio and superior buckling strength resulting fromthe sandwich effect.Such structures can be fabricated bymetallic additive manufacturing technique,such as selective laser melting(SLM).However,the maximum dimensions of actual structures are usually in a sub-meter scale,which results in restrictions on their appliance in aerospace and other fields.In this work,a meter-scale thin-walled structure with lattice infill is designed for the fuel tank supporting component of the satellite by integrating a self-supporting lattice into the thickness optimization of the thin-wall.The designed structure is fabricated by SLM of AlSi10Mg and cold metal transfer welding technique.Quasi-static mechanical tests and vibration tests are both conducted to verify the mechanical strength of the designed large-scale lattice thin-walled structure.The experimental results indicate that themeter-scale thin-walled structure with lattice infill could meet the dimension and lightweight requirements of most spacecrafts.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(Grant no.2019QZKK0904)Natural Science Foundation of Hebei Province(Grant no.D2022403032)S&T Program of Hebei(Grant no.E2021403001).
文摘The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques were applied to identify the most important input parameters for mapping debris flow susceptibility in the southern mountain area of Chengde City in Hebei Province,China,by using machine learning algorithms.In total,133 historical debris flow records and 16 related factors were selected.The support vector machine(SVM)was first used as the base classifier,and then a hybrid model was introduced by a two-step process.First,the particle swarm optimization(PSO)algorithm was employed to select the SVM model hyperparameters.Second,two feature selection algorithms,namely principal component analysis(PCA)and PSO,were integrated into the PSO-based SVM model,which generated the PCA-PSO-SVM and FS-PSO-SVM models,respectively.Three statistical metrics(accuracy,recall,and specificity)and the area under the receiver operating characteristic curve(AUC)were employed to evaluate and validate the performance of the models.The results indicated that the feature selection-based models exhibited the best performance,followed by the PSO-based SVM and SVM models.Moreover,the performance of the FS-PSO-SVM model was better than that of the PCA-PSO-SVM model,showing the highest AUC,accuracy,recall,and specificity values in both the training and testing processes.It was found that the selection of optimal features is crucial to improving the reliability of debris flow susceptibility assessment results.Moreover,the PSO algorithm was found to be not only an effective tool for hyperparameter optimization,but also a useful feature selection algorithm to improve prediction accuracies of debris flow susceptibility by using machine learning algorithms.The high and very high debris flow susceptibility zone appropriately covers 38.01%of the study area,where debris flow may occur under intensive human activities and heavy rainfall events.
基金financial support provided by the Xinjiang Uygur Autonomous Region Key R&D Project Task Special-Department and Department Linkage Project(No.2022B01051)Major Project of Regional Joint Foundation of China(No.U21A20107)+1 种基金Hunan Provincial Natural Science Foundation of China(No.2024JJ4021)the Xinjiang Uygur Autonomous Region Tianchi Introduction Plan(No.2024XGYTCYC03)。
文摘The load-bearing performance(LBP)of pumpable supports(PPS)is crucial for the stability of longwall pre-driven recovery room(PRR)surrounding rock.However,the unbalanced bearing coefficient(UBC)of the PPS(undertaking unequal load along the mining direction)has not been investigated.A mechanical model of the PRR was established,considering the main roof cantilever beam structure,to derive an assessment formula for the load,the failure criteria,and the UBC of the PPS.Subsequently,the generation mechanisms,and influencing factors of the UBC were revealed.Global sensitivity analysis shows that the main roof hanging length(l_(2))and the spacing between the PPS(r)significantly impact the UBC.A novel design of the PPS and the coupling control technology were proposed and applied to reduce the UBC of the PPS in the adjacent longwall PRR.Monitor results showed no failure of the PPS at the test site,with the UBC(ζ)reduced to 1.1 consistent with the design value(1.15)basically,fully utilizing the collaborative LBP of the PPS.Finally,the maximum roof-to-floor convergence of the PRR was 234 mm,effectively controlling the stability of the surrounding rock of the PRR and ensuring the mining equipment recovery.
基金supported in part by National Natural Science Foundation of China(Nos.62102311,62202377,62272385)in part by Natural Science Basic Research Program of Shaanxi(Nos.2022JQ-600,2022JM-353,2023-JC-QN-0327)+2 种基金in part by Shaanxi Distinguished Youth Project(No.2022JC-47)in part by Scientific Research Program Funded by Shaanxi Provincial Education Department(No.22JK0560)in part by Distinguished Youth Talents of Shaanxi Universities,and in part by Youth Innovation Team of Shaanxi Universities.
文摘With the widespread data collection and processing,privacy-preserving machine learning has become increasingly important in addressing privacy risks related to individuals.Support vector machine(SVM)is one of the most elementary learning models of machine learning.Privacy issues surrounding SVM classifier training have attracted increasing attention.In this paper,we investigate Differential Privacy-compliant Federated Machine Learning with Dimensionality Reduction,called FedDPDR-DPML,which greatly improves data utility while providing strong privacy guarantees.Considering in distributed learning scenarios,multiple participants usually hold unbalanced or small amounts of data.Therefore,FedDPDR-DPML enables multiple participants to collaboratively learn a global model based on weighted model averaging and knowledge aggregation and then the server distributes the global model to each participant to improve local data utility.Aiming at high-dimensional data,we adopt differential privacy in both the principal component analysis(PCA)-based dimensionality reduction phase and SVM classifiers training phase,which improves model accuracy while achieving strict differential privacy protection.Besides,we train Differential privacy(DP)-compliant SVM classifiers by adding noise to the objective function itself,thus leading to better data utility.Extensive experiments on three high-dimensional datasets demonstrate that FedDPDR-DPML can achieve high accuracy while ensuring strong privacy protection.
基金Project(52178402)supported by the National Natural Science Foundation of ChinaProject(2021-Key-09)supported by the Science and Technology Research and Development Program Project of China Railway Group LimitedProject(2021zzts0216)supported by the Innovation-Driven Project of Central South University,China。
文摘Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.
基金financially supported by the Deanship of Scientific Research at King Khalid University under Research Grant Number(R.G.P.2/549/44).
文摘Algorithms for steganography are methods of hiding data transfers in media files.Several machine learning architectures have been presented recently to improve stego image identification performance by using spatial information,and these methods have made it feasible to handle a wide range of problems associated with image analysis.Images with little information or low payload are used by information embedding methods,but the goal of all contemporary research is to employ high-payload images for classification.To address the need for both low-and high-payload images,this work provides a machine-learning approach to steganography image classification that uses Curvelet transformation to efficiently extract characteristics from both type of images.Support Vector Machine(SVM),a commonplace classification technique,has been employed to determine whether the image is a stego or cover.The Wavelet Obtained Weights(WOW),Spatial Universal Wavelet Relative Distortion(S-UNIWARD),Highly Undetectable Steganography(HUGO),and Minimizing the Power of Optimal Detector(MiPOD)steganography techniques are used in a variety of experimental scenarios to evaluate the performance of the proposedmethod.Using WOW at several payloads,the proposed approach proves its classification accuracy of 98.60%.It exhibits its superiority over SOTA methods.
基金Project(2023YFC2907600)supported by the National Key Research and Development Program of ChinaProjects(42077267,42277174,52074164)supported by the National Natural Science Foundation of ChinaProject(2024JCCXSB01)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation.The stability control of automatically formed roadway is the key to the successful application of the new method.In order to realize the stability control of the roadway surrounding rock,the mechanical model of the roof and rib support structure is established,and the influence mechanism of the automatically formed roadway parameters on the compound force is revealed.On this basis,the roof and rib support structure technology of confined lightweight concrete is proposed,and its mechanical tests under different eccentricity are carried out.The results show that the bearing capacity of confined lightweight concrete specimens is basically the same as that of ordinary confined concrete specimens.The bearing capacity of confined lightweight concrete specimens under different eccentricities is 1.95 times higher than those of U-shaped steel specimens.By comparing the test results with the theoretical calculated results of the confined concrete,the calculation method of the bearing capacity for the confined lightweight concrete structure is selected.The design method of confined lightweight concrete support structure is established,and is successfully applied in the extra-large mine,Ningtiaota Coal Mine,China.
基金supported by the National Natural Science Foundation of China,Nos.81870732(to DZ),82171161(to DZ),81900933(to YS),and 82000978(to ZL).
文摘The spontaneous bursts of electrical activity in the developing auditory system are derived from the periodic release of adenosine triphosphate(ATP)by supporting cells in the Kölliker’s organ.However,the mechanisms responsible for initiating spontaneous ATP release have not been determined.Our previous study revealed that telomerase reverse transcriptase(TERT)is expressed in the basilar membrane during the first postnatal week.Its role in cochlear development remains unclear.In this study,we investigated the expression and role of TERT in postnatal cochlea supporting cells.Our results revealed that in postnatal cochlear Kölliker’s organ supporting cells,TERT shifts from the nucleus into the cytoplasm over time.We found that the TERT translocation tendency in postnatal cochlear supporting cells in vitro coincided with that observed in vivo.Further analysis showed that TERT in the cytoplasm was mainly located in mitochondria in the absence of oxidative stress or apoptosis,suggesting that TERT in mitochondria plays roles other than antioxidant or anti-apoptotic functions.We observed increased ATP synthesis,release and activation of purine signaling systems in supporting cells during the first 10 postnatal days.The phenomenon that TERT translocation coincided with changes in ATP synthesis,release and activation of the purine signaling system in postnatal cochlear supporting cells suggested that TERT may be involved in regulating ATP release and activation of the purine signaling system.Our study provides a new research direction for exploring the spontaneous electrical activity of the cochlea during the early postnatal period.
文摘Single-phase 25 kV traction networks of electrified alternating current(AC)railways create electromagnetic fields(EMFs)with significant levels of intensity.The most intense magnetic fields occur when short circuits exist between the contact wire and rails or ground.Despite the short duration of exposure,they can adversely affect electronic devices and induce significant voltages in adjacent power lines,which is dangerous for operating personnel.Although numerous investigations have focused on modeling the EMF of traction networks and power lines,the challenge of determining the three-dimensional electromagnetic fields near metal supports during the flow of a short-circuit current through them is yet to be resolved.In this case,the field has a complex spatial structure that significantly complicates the calculations of intensities.This study proposes a methodology,algorithms,software,and digital models for determining the EMF in the described emergency scenarios.During the modeling process,the objects being studied were represented by segments of thin wires to analyze the distribution of the electric charge and calculate the intensities of the electric and magnetic fields.This approach was implemented in the Fazonord software,and the modeling results show a substantial increase in EMF levels close to the support,with a noticeable decrease in the levels as the distance from it increases.The procedure implemented in the commercial software Fazonord is universal and can be used to determine electromagnetic fields at any electrical power facility that includes live parts of limited length.Based on the proposed procedure,the EMF near the supports of overhead power lines and traction networks of various designs could be determined,the EMF levels at substations can be calculated,and the influence of metal structures located near traction networks,such as pedestrian crossings at railway stations,can be considered.
基金financially supported by the NationalNatural Science Foundation of China(Grant No.42072309)the Fundamental Research Funds for National University,China University of Geosciences(Wuhan)(Grant No.CUGDCJJ202217)+1 种基金the Knowledge Innovation Program of Wuhan-Basic Research(Grant No.2022020801010199)the Hubei Key Laboratory of Blasting Engineering Foundation(HKLBEF202002).
文摘Accurately estimating blasting vibration during rock blasting is the foundation of blasting vibration management.In this study,Tuna Swarm Optimization(TSO),Whale Optimization Algorithm(WOA),and Cuckoo Search(CS)were used to optimize two hyperparameters in support vector regression(SVR).Based on these methods,three hybrid models to predict peak particle velocity(PPV)for bench blasting were developed.Eighty-eight samples were collected to establish the PPV database,eight initial blasting parameters were chosen as input parameters for the predictionmodel,and the PPV was the output parameter.As predictive performance evaluation indicators,the coefficient of determination(R2),rootmean square error(RMSE),mean absolute error(MAE),and a10-index were selected.The normalizedmutual information value is then used to evaluate the impact of various input parameters on the PPV prediction outcomes.According to the research findings,TSO,WOA,and CS can all enhance the predictive performance of the SVR model.The TSO-SVR model provides the most accurate predictions.The performances of the optimized hybrid SVR models are superior to the unoptimized traditional prediction model.The maximum charge per delay impacts the PPV prediction value the most.