期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
CO_2 methanation over TiO_2–Al_2O_3 binary oxides supported Ru catalysts 被引量:5
1
作者 Jinghua Xu Qingquan Lin +3 位作者 Xiong Su Hongmin Duan Haoran Geng Yanqiang Huang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第1期140-145,共6页
TiO_2 modified Al_2O_3 binary oxide was prepared by a wet-impregnation method and used as the support for ruthenium catalyst. The catalytic performance of Ru/TiO_2–Al_2O_3catalyst in CO_2 methanation reaction was inv... TiO_2 modified Al_2O_3 binary oxide was prepared by a wet-impregnation method and used as the support for ruthenium catalyst. The catalytic performance of Ru/TiO_2–Al_2O_3catalyst in CO_2 methanation reaction was investigated. Compared with Ru/Al_2O_3 catalyst, the Ru/TiO_2–Al_2O_3catalytic system exhibited a much higher activity in CO_2 methanation reaction. The reaction rate over Ru/TiO_2–Al_2O_3 was 0.59 mol CO_2·(g Ru)1·h-1, 3.1 times higher than that on Ru/Al_2O_3[0.19 mol CO_2·(gRu)-1·h-1]. The effect of TiO_2 content and TiO_2–Al_2O_3calcination temperature on catalytic performance was addressed. The corresponding structures of each catalyst were characterized by means of H_2-TPR, XRD, and TEM. Results indicated that the averaged particle size of the Ru on TiO_2–Al_2O_3support is 2.8 nm, smaller than that on Al_2O_3 support of 4.3 nm. Therefore, we conclude that the improved activity over Ru/TiO_2–Al_2O_3catalyst is originated from the smaller particle size of ruthenium resulting from a strong interaction between Ru and the rutile-TiO_2 support, which hindered the aggregation of Ru nanoparticles. 展开更多
关键词 CO2 methanation supported ru catalyst TiO2–Al2O3 binary oxide
下载PDF
Advanced heterolytic H_(2) adsorption of K-added Ru/MgO catalysts for accelerating hydrogen storage into aromatic benzyltoluenes
2
作者 Tae Wan Kim Hwiram Jeong +4 位作者 Yeongin Jo Dongun Kim Ji Hoon Park Seok Ki Kim Young-Woong Suh 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期333-343,I0009,共12页
Herein,we report a highly active K-added Ru/MgO catalyst for hydrogen storage into aromatic benzyltoluenes at low temperatures to advance liquid organic hydrogen carrier technology.The hydrogenation activity of Ru/K/M... Herein,we report a highly active K-added Ru/MgO catalyst for hydrogen storage into aromatic benzyltoluenes at low temperatures to advance liquid organic hydrogen carrier technology.The hydrogenation activity of Ru/K/MgO catalysts exhibits a volcano-shaped dependence on the K content at the maximum with 0.02 wt%.This is in good agreement with the strength and capacity of H_(2) adsorption derived from basicity,despite a gradual decrease in the textural property and the corresponding increase in the Ru particle size with increasing the K content.Density functional theory calculations show that heterolytic hydrogen adsorption properties(strength and polarization)are facilitated up to a specific density of K on the Ru–MgO interface and excessive K suppresses heterolytic H_(2) adsorption by direct interaction between K and hydrogen,assuring the hydrogenation activity and H_(2) adsorption capability of Ru/K/MgO catalysts.Hence,the Ru/K/MgO catalyst,when K is added in an optimal amount,is highly effective to accelerate hydrogen storage kinetics at low temperatures owing to the enhanced heterolytic H_(2) adsorption. 展开更多
关键词 Chemical hydrogen storage supported ru catalysts ru–MgO interface Heterolytic H_(2)adsorption Charge transfer Potassium promotion
下载PDF
Effect of the graphitic degree of carbon supports on the catalytic performance of ammonia synthesis over Ba-Ru-K/HSGC catalyst 被引量:8
3
作者 Wei Jiang Ying Li +3 位作者 Wenfeng Han Yaping Zhou Haodong Tang Huazhang Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第4期443-452,共10页
A series of high surface area graphitic carbon materials (HSGCs) were prepared by ball-milling method. Effect of the graphitic degree of HSGCs on the catalytic performance of Ba-Ru-K/HSGC-x (x is the ball-milling t... A series of high surface area graphitic carbon materials (HSGCs) were prepared by ball-milling method. Effect of the graphitic degree of HSGCs on the catalytic performance of Ba-Ru-K/HSGC-x (x is the ball-milling time in hour) catalysts was studied using ammonia synthesis as a probe reaction. The graphitic degree and pore structure of HSGC-x supports could be successfully tuned via the variation of ball-milling time. Ru nanoparticles of different Ba-Ru-K/HSGC-x catalysts are homogeneously distributed on the supports with the particle sizes ranging from 1.6 to 2.0 nm. The graphitic degree of the support is closely related to its facile electron transfer capability and so plays an important role in improving the intrinsic catalytic performance of Ba-Ru-K/HSGC-x catalyst. 展开更多
关键词 high surface area graphitic carbon materials (HSGCs) supported ru catalysts ammonia synthesis graphitic degree ball-roJlling
下载PDF
Immobilized Ruthenium Catalyst for Carbon Dioxide Hydrogenation
4
作者 Ying Min YU Jin Hua FEI +1 位作者 Yi Ping ZHANG Xiao Ming ZHENG 《Chinese Chemical Letters》 SCIE CAS CSCD 2006年第8期1097-1100,共4页
Three kinds of cross linked polystyrene resin (PS) supported ruthenium complexes were developed as catalysts for the synthesis of formic acid from carbon dioxide hydrogenation. Many factors, such as the functionaliz... Three kinds of cross linked polystyrene resin (PS) supported ruthenium complexes were developed as catalysts for the synthesis of formic acid from carbon dioxide hydrogenation. Many factors, such as the functionalized supports, solvents and ligands, could influence their activities and reuse performances greatly. These immobilized catalysts also offer the industrial advantages such as easy separation. 展开更多
关键词 IMMOBILIZATION RESIN supported ru catalyst HYDROGENATION CO2-expanded solvent.
下载PDF
Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on Ru/C catalysts 被引量:9
5
作者 Lufan Zheng Junqi Zhao +2 位作者 Zexue Du Baoning Zong Haichao Liu 《Science China Chemistry》 SCIE EI CAS CSCD 2017年第7期950-957,共8页
2,5-Furandicarboxylic(FDCA) is a potential substitute for petroleum-derived terephthalic acid, and aerobic oxidation of5-hydroxymethylfurfural(HMF) provides an efficient route to synthesis of FDCA. On an activated car... 2,5-Furandicarboxylic(FDCA) is a potential substitute for petroleum-derived terephthalic acid, and aerobic oxidation of5-hydroxymethylfurfural(HMF) provides an efficient route to synthesis of FDCA. On an activated carbon supported ruthenium(Ru/C) catalyst(with 5 wt% Ru loading), HMF was readily oxidized to FDCA in a high yield of 97.3% at 383 K and 1.0 MPa O_2 in the presence of Mg(OH)_2 as base additive. Ru/C was superior to Pt/C and Pd/C and also other supported Ru catalysts with similar sizes of metal nanoparticles(1–2 nm). The Ru/C catalysts were stable and recyclable, and their efficiency in the formation of FDCA increased with Ru loadings examined in the range of 0.5 wt%–5.0 wt%. Based on the kinetic studies including the effects of reaction time, reaction temperature, O_2 pressure, on the oxidation of HMF to FDCA on Ru/C, it was confirmed that the oxidation of HMF to FDCA proceeds involving the primary oxidation of HMF to 2,5-diformylfuran(DFF) intermediate, and its sequential oxidation to 5-formyl-2-furancarboxylic acid(FFCA) and ultimately to FDCA, in which the oxidation of FFCA to FDCA is the rate-determining step and dictates the overall formation rate of FDCA. This study provides directions towards efficient synthesis of FDCA from HMF, for example, by designing novel catalysts more efficient for the involved oxidation step of FFCA to FDCA. 展开更多
关键词 aerobic oxidation 5-hydromethylfurfural 2 5-furandicarboxylic supported ru catalyst base additives reaction mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部