A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solu...A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method.The method’s validity and reliability are substantiated through numerical examples.A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed,braking acceleration,braking location,and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed.The results show that vehicle braking significantly amplifies mid-span displacement and impact factor responses in comparison to uniform vehicular motion across the bridge.Notably,the influence of wheelto-bridge friction forces is of particular significance and cannot be overlooked.When the vehicle initiates braking near the middle of the span,both the mid-span displacement and impact factor of the bridge exhibit substantial increases,further escalating with higher braking acceleration.Under favorable road surface conditions,the midspan displacement and the impact factor during vehicle braking may exceed the design values stipulated by codes.It is important to note that road surface roughness exerts a more pronounced effect on the impact factor of the bridge in comparison to the effects of vehicle braking.展开更多
In order to study the effect of temperature difference load (TDL) along the vertical direction of a simply supported beam bridge section on the vertical irregularity, a rail-bridge-piers calculation model was establ...In order to study the effect of temperature difference load (TDL) along the vertical direction of a simply supported beam bridge section on the vertical irregularity, a rail-bridge-piers calculation model was established. Taking 32 m simply supported box beam bridge which is widely used in the construction of pas- senger dedicated line in China as an example, influences of the temperature variation between the bottom and top of the bridge, temperature curve index, type of temperature gradient, and beam height on track vertical irregularity were analyzed with the model. The results show that TDL has more effects on long wave track irregularity than on short one, and the wavelength mainly affected is approxi- mately equal to the beam span. The amplitude of irregu- larity caused by TDL is largely affected by the temperature variation, temperature curve index, and type of temperature gradient, so it is necessary to monitor the temperaturedistribution of bridges in different regions to provide accurate calculation parameters. In order to avoid the irregularity exceeding the limit values, the height of 32, 48, and 64 m simply supported box beam bridges must not be less than 2.15, 3.2, and 4.05 m, respectively.展开更多
Using the inverse method, the analytical solution of a simply supported piezoelectric beam subjected to a uniformly distributed loading has been studied.First,the polynomials of stress function and induction function ...Using the inverse method, the analytical solution of a simply supported piezoelectric beam subjected to a uniformly distributed loading has been studied.First,the polynomials of stress function and induction function are given.Then, considering the gradient properties of the elastic parameter and the potential funciton as well as the piezoelectric parameter,the analytical solution of a simply supported beam subjected to a uniformly distributed loading is obtained and discussed.展开更多
Aiming to mitigate the aerodynamic lift force imbalance between pantograph strips,which exacerbates wear and affects the current collection performance of the pantograph-catenary system,a study has been conducted to s...Aiming to mitigate the aerodynamic lift force imbalance between pantograph strips,which exacerbates wear and affects the current collection performance of the pantograph-catenary system,a study has been conducted to support the beam deflector optimization using a combination of experimental measurements and computational fluid dynamics(CFD)simulations.The results demonstrate that the size,position,and installation orientation of the wind deflectors significantly influence the amount of force compensation.They also indicate that the front strip deflectors should be installed downwards and the rear strip deflectors upwards,thereby forming a“π”shape.Moreover,the lift force compensation provided by the wind deflectors increases with the size of the deflector.Alternative wind compensation strategies,such as control circuits,are also discussed,putting emphasis on the pros and cons of various pantograph types and wind compensation approaches.展开更多
The tangent stiffness matrix of Timoshenko beam element is applied in the buckling of multi-step beams under several concentrated axial forces with elastic supports. From the governing differential equation of lateral...The tangent stiffness matrix of Timoshenko beam element is applied in the buckling of multi-step beams under several concentrated axial forces with elastic supports. From the governing differential equation of lateral deflection including second-order effects,the relationship of force versus displacement is established. In the formulation of finite element method (FEM),the stiffness matrix developed has the same accuracy with the solution of exact differential equations. The proposed tangent stiffness matrix will degenerate into the Bernoulli-Euler beam without the effects of shear deformation. The critical buckling force can be determined from the determinant element assemblage by FEM. The equivalent stiffness matrix constructed by the topmost deflection and slope is established by static condensation method,and then a recurrence formula is proposed. The validity and efficiency of the proposed method are shown by solving various numerical examples found in the literature.展开更多
Facing the lateral vibration problem of a machine rotor as a beam on elastic supports in bending,the authors deal with the free vibration of elastically restrained Bernoulli-Euler beams carrying a finite number of con...Facing the lateral vibration problem of a machine rotor as a beam on elastic supports in bending,the authors deal with the free vibration of elastically restrained Bernoulli-Euler beams carrying a finite number of concentrated elements along their length.Based on Rayleigh’s quotient,an iterative strategy is developed to find the approximated torsional stiffness coefficients,which allows the reconciliation between the theoretical model results and the experimental ones,obtained through impact tests.The mentioned algorithm treats the vibration of continuous beams under a determined set of boundary and continuity conditions, including different torsional stiffness coefficients and the effect of attached concentrated masses and rotational inertias, not only in the energetic terms of the Rayleigh’s quotient but also on the mode shapes,considering the shape functions defined in branches.Several loading cases are examined and examples are given to illustrate the validity of the model and accuracy of the obtained natural frequencies.展开更多
This paper describes a new design of the neutral beam manifold based on a more optimized support system.A proposed alternative scheme has presented to replace the former complex manifold supports and internal pipe sup...This paper describes a new design of the neutral beam manifold based on a more optimized support system.A proposed alternative scheme has presented to replace the former complex manifold supports and internal pipe supports in the final design phase.Both the structural reliability and feasibility were confirmed with detailed analyses.Comparative analyses between two typical types of manifold support scheme were performed.All relevant results of mechanical analyses for typical operation scenarios and fault conditions are presented.Future optimization activities are described,which will give useful information for a refined setting of components in the next phase.展开更多
Stability condition and quality evaluation formula of layerlike backfilling roof,Q≥C,where Q denotes is quality index depending on allowable compressive or tensile strength and integrity of backfilling,and C is the t...Stability condition and quality evaluation formula of layerlike backfilling roof,Q≥C,where Q denotes is quality index depending on allowable compressive or tensile strength and integrity of backfilling,and C is the technical index depending on mining method and backfilling technology,were inferred according to simply supported beam theorem.Technical treatment measures for instable backfilling roof,including optimum of appropriate filling materials and dosage for excellent flow property and reduction of backfill cost.It is proved that slope equation of backfill slurry in a stope to be filled is y=hexp[x2/(2σ)2)],where h is height of cone and σ2 is mean square,and that optimum drainage point of backfill slurry can be determined by the equation and sizes of stope.Case study indicates that the results can give a theoretical support for quality evaluation and control of layerlike backfilling.展开更多
Using a center etched single mode optical fiber, a simple vibration senor is designed to monitor the vibrations of a simply supported beam. The sensor has high linear response to the axial displacement of about 0.8mm ...Using a center etched single mode optical fiber, a simple vibration senor is designed to monitor the vibrations of a simply supported beam. The sensor has high linear response to the axial displacement of about 0.8mm with a sensitivity of 32mV/10p, m strain. The sensor is tested for periodic and suddenly released forces, and the results are found to coincide with the theoretical values. This simple design, small in size and low cost sensor may find applications in industry and civil engineering to monitor the vibrations of the beam structures and bridges.展开更多
China railways track structure II (CRTS II) slab ballastless track on bridge is one kind of track structures unique to China. Its main bearing component of longitudinal force is the continuous base plate rather than ...China railways track structure II (CRTS II) slab ballastless track on bridge is one kind of track structures unique to China. Its main bearing component of longitudinal force is the continuous base plate rather than rail. And the track-bridge interaction is weakened by the sliding layer installed between base plate and bridge deck. In order to study the dynamic response of CRTS II slab ballastless track on bridge under seismic action, a 3D nonlinear dynamic model for simply-supported bridges and CRTS II track was established, which considered structures such as steel rail, fasteners, track plate, mortar layer, base plate, sliding layer, bridge, consolidation, anchors, stoppers, etc. Then its force and deformation features under different intensities of seismic excitation were studied. As revealed, the seismic response of the system increases with the increase of seismic intensity. The peak stresses of rail, track plate and base plate all occur at the abutment or anchors. Both track plate and base plate are about to crack. Besides, the rapid relative displacement between base plate and bridge deck due to the small friction coefficient of sliding layer is beneficial to improve the seismic performance of the system. During the earthquake, a large vertical displacement appears in base plate which leads to frequent collisions between stoppers and base plate, as a result, stoppers may be damaged.展开更多
基金supported by the Henan Provincial Science and Technology Research Project under Grant(152102310295).
文摘A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method.The method’s validity and reliability are substantiated through numerical examples.A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed,braking acceleration,braking location,and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed.The results show that vehicle braking significantly amplifies mid-span displacement and impact factor responses in comparison to uniform vehicular motion across the bridge.Notably,the influence of wheelto-bridge friction forces is of particular significance and cannot be overlooked.When the vehicle initiates braking near the middle of the span,both the mid-span displacement and impact factor of the bridge exhibit substantial increases,further escalating with higher braking acceleration.Under favorable road surface conditions,the midspan displacement and the impact factor during vehicle braking may exceed the design values stipulated by codes.It is important to note that road surface roughness exerts a more pronounced effect on the impact factor of the bridge in comparison to the effects of vehicle braking.
基金supported by the National Science Foundation (U1234201)the Doctorial Innovation Fund of Southwest Jiaotong University
文摘In order to study the effect of temperature difference load (TDL) along the vertical direction of a simply supported beam bridge section on the vertical irregularity, a rail-bridge-piers calculation model was established. Taking 32 m simply supported box beam bridge which is widely used in the construction of pas- senger dedicated line in China as an example, influences of the temperature variation between the bottom and top of the bridge, temperature curve index, type of temperature gradient, and beam height on track vertical irregularity were analyzed with the model. The results show that TDL has more effects on long wave track irregularity than on short one, and the wavelength mainly affected is approxi- mately equal to the beam span. The amplitude of irregu- larity caused by TDL is largely affected by the temperature variation, temperature curve index, and type of temperature gradient, so it is necessary to monitor the temperaturedistribution of bridges in different regions to provide accurate calculation parameters. In order to avoid the irregularity exceeding the limit values, the height of 32, 48, and 64 m simply supported box beam bridges must not be less than 2.15, 3.2, and 4.05 m, respectively.
文摘Using the inverse method, the analytical solution of a simply supported piezoelectric beam subjected to a uniformly distributed loading has been studied.First,the polynomials of stress function and induction function are given.Then, considering the gradient properties of the elastic parameter and the potential funciton as well as the piezoelectric parameter,the analytical solution of a simply supported beam subjected to a uniformly distributed loading is obtained and discussed.
文摘Aiming to mitigate the aerodynamic lift force imbalance between pantograph strips,which exacerbates wear and affects the current collection performance of the pantograph-catenary system,a study has been conducted to support the beam deflector optimization using a combination of experimental measurements and computational fluid dynamics(CFD)simulations.The results demonstrate that the size,position,and installation orientation of the wind deflectors significantly influence the amount of force compensation.They also indicate that the front strip deflectors should be installed downwards and the rear strip deflectors upwards,thereby forming a“π”shape.Moreover,the lift force compensation provided by the wind deflectors increases with the size of the deflector.Alternative wind compensation strategies,such as control circuits,are also discussed,putting emphasis on the pros and cons of various pantograph types and wind compensation approaches.
基金Sponsored by the National Key Technology Research and Development Program (Grant No.2006BAJ12B03-2)
文摘The tangent stiffness matrix of Timoshenko beam element is applied in the buckling of multi-step beams under several concentrated axial forces with elastic supports. From the governing differential equation of lateral deflection including second-order effects,the relationship of force versus displacement is established. In the formulation of finite element method (FEM),the stiffness matrix developed has the same accuracy with the solution of exact differential equations. The proposed tangent stiffness matrix will degenerate into the Bernoulli-Euler beam without the effects of shear deformation. The critical buckling force can be determined from the determinant element assemblage by FEM. The equivalent stiffness matrix constructed by the topmost deflection and slope is established by static condensation method,and then a recurrence formula is proposed. The validity and efficiency of the proposed method are shown by solving various numerical examples found in the literature.
基金supported by the Portuguese Foundation for Science and Tech-nology(FCT),under the project POCI 2010 and the PhD grant SFRH/BD/44696/2008
文摘Facing the lateral vibration problem of a machine rotor as a beam on elastic supports in bending,the authors deal with the free vibration of elastically restrained Bernoulli-Euler beams carrying a finite number of concentrated elements along their length.Based on Rayleigh’s quotient,an iterative strategy is developed to find the approximated torsional stiffness coefficients,which allows the reconciliation between the theoretical model results and the experimental ones,obtained through impact tests.The mentioned algorithm treats the vibration of continuous beams under a determined set of boundary and continuity conditions, including different torsional stiffness coefficients and the effect of attached concentrated masses and rotational inertias, not only in the energetic terms of the Rayleigh’s quotient but also on the mode shapes,considering the shape functions defined in branches.Several loading cases are examined and examples are given to illustrate the validity of the model and accuracy of the obtained natural frequencies.
文摘This paper describes a new design of the neutral beam manifold based on a more optimized support system.A proposed alternative scheme has presented to replace the former complex manifold supports and internal pipe supports in the final design phase.Both the structural reliability and feasibility were confirmed with detailed analyses.Comparative analyses between two typical types of manifold support scheme were performed.All relevant results of mechanical analyses for typical operation scenarios and fault conditions are presented.Future optimization activities are described,which will give useful information for a refined setting of components in the next phase.
基金Project(50490270) supported by the National Natural Science Foundation of China
文摘Stability condition and quality evaluation formula of layerlike backfilling roof,Q≥C,where Q denotes is quality index depending on allowable compressive or tensile strength and integrity of backfilling,and C is the technical index depending on mining method and backfilling technology,were inferred according to simply supported beam theorem.Technical treatment measures for instable backfilling roof,including optimum of appropriate filling materials and dosage for excellent flow property and reduction of backfill cost.It is proved that slope equation of backfill slurry in a stope to be filled is y=hexp[x2/(2σ)2)],where h is height of cone and σ2 is mean square,and that optimum drainage point of backfill slurry can be determined by the equation and sizes of stope.Case study indicates that the results can give a theoretical support for quality evaluation and control of layerlike backfilling.
文摘Using a center etched single mode optical fiber, a simple vibration senor is designed to monitor the vibrations of a simply supported beam. The sensor has high linear response to the axial displacement of about 0.8mm with a sensitivity of 32mV/10p, m strain. The sensor is tested for periodic and suddenly released forces, and the results are found to coincide with the theoretical values. This simple design, small in size and low cost sensor may find applications in industry and civil engineering to monitor the vibrations of the beam structures and bridges.
基金supported by the National Natural Science Foundation of China (Grant No. 51608542)Project of Science and Technology Research and Development Program of China Railway Corporation (Grant No.2015G001-G)
文摘China railways track structure II (CRTS II) slab ballastless track on bridge is one kind of track structures unique to China. Its main bearing component of longitudinal force is the continuous base plate rather than rail. And the track-bridge interaction is weakened by the sliding layer installed between base plate and bridge deck. In order to study the dynamic response of CRTS II slab ballastless track on bridge under seismic action, a 3D nonlinear dynamic model for simply-supported bridges and CRTS II track was established, which considered structures such as steel rail, fasteners, track plate, mortar layer, base plate, sliding layer, bridge, consolidation, anchors, stoppers, etc. Then its force and deformation features under different intensities of seismic excitation were studied. As revealed, the seismic response of the system increases with the increase of seismic intensity. The peak stresses of rail, track plate and base plate all occur at the abutment or anchors. Both track plate and base plate are about to crack. Besides, the rapid relative displacement between base plate and bridge deck due to the small friction coefficient of sliding layer is beneficial to improve the seismic performance of the system. During the earthquake, a large vertical displacement appears in base plate which leads to frequent collisions between stoppers and base plate, as a result, stoppers may be damaged.