期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Quantifying social costs of coal-fired power plant generation
1
作者 Andewi Rokhmawati Agus Sugiyono +1 位作者 Yulia Efni Rendra Wasnury 《Geography and Sustainability》 CSCD 2023年第1期39-48,共10页
Coal has been dominating the electricity supply in Indonesia,especially in long-term power generation from fossil energy.This dominance is due to lower production costs in coal-fired power plant generation.However,thi... Coal has been dominating the electricity supply in Indonesia,especially in long-term power generation from fossil energy.This dominance is due to lower production costs in coal-fired power plant generation.However,this low price is only based on monetary costs and ignores the social costs.Therefore,this study aims to quantify the social costs of coal-fired generation.Using QUERI-AirPacts modeling,the present study quantifies the social costs resulting from the Tenayan Raya coal-fired generation in Riau,Indonesia.It includes the levelized cost of electricity and health costs into the generation costs.After that,this study calculates the net present value,internal rate return,and project payback period.The study found that as much as$50.22/MWh was the levelized cost of electricity.While$15.978/MWh or$0.015978/kWh was the social cost that was not included in the generating cost.At the electricity production level of 1,380,171.69 MWh per year,there is an expected extra cost of$22,052,383.30 uncounted when externalities are included.For instance,the net present value(NPV)is lower and even negative when external costs are included(-$24,062,274.19)compared to$176,108,091.52 when externalities are not considered.The internal rate of return(IRR)is much higher when the social costs are not considered.The payback period is also shorter when the social costs are excluded than when the externalities are included.This global number indicates that the inclusion of external costs would impact NPV,IRR,and the payback period.This result implies that the government should internalize the external cost to stimulate the electricity producers to conduct cost-benefit analyses.The cost-benefit analysis mechanism would lead the producers to be more efficient. 展开更多
关键词 AirPact coal-fired generation Externality cost Health cost Levelized cost of electricity Social cost
下载PDF
Performance Analysis of an Efficient Integration System of Coal-Fired Power Plant,Solar Thermal Energy and CO_(2)Capture
2
作者 WANG Yuhao WANG Ruilin +8 位作者 LIU Lanhua XING Chenjian GUO Yafei YANG Qingshan YING Jiaheng SUN Jian LI Wenjia LIU Yuanyuan ZHAO Chuanwen 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第4期1509-1522,共14页
Coal-fired power plant is a major contributor to greenhouse gas emissions.The post-combustion capture is a promising method for CO_(2)emission reduction but the high thermal demand is unbearable.To address this issue,... Coal-fired power plant is a major contributor to greenhouse gas emissions.The post-combustion capture is a promising method for CO_(2)emission reduction but the high thermal demand is unbearable.To address this issue,solar thermal energy and CO_(2)capture are jointly integrated into the coal-fired power plant in this study.The solar thermal energy is employed to meet the heat requirement of the CO_(2)capture process,thereby avoiding the electricity loss caused by self-driven CO_(2)capture.Furthermore,the heat released from the carbonation reaction of MgO adsorbent is integrated into the steam Rankine cycle.By partially substituting the extracted steam for feedwater heating,the electricity output of the power plant is further increased.According to the results from the developed model,the system could achieve a CO_(2)capture rate of 86.5%and an electricity output enhancement of 9.8%compared to the reference system,which consists of a self-driven CO_(2)capture coal-fired power plant and PV generation unit.The operational strategy is also optimized and the amount of CO_(2)emission reduction on a typical day is increased by 11.06%.This work shows a way to combine fossil fuels and renewable energy for low carbon emissions and efficient power generation. 展开更多
关键词 CO_(2)capture parabolic trough collector solar aided coal-fired electricity generation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部