A series of Co/γ-Al_2O_3 catalysts were prepared with the impregnation method and characterized by means of the BET specific surface area, X-ray diffraction(XRD), thermogravimetric analysis(TGA) and Laser Raman spect...A series of Co/γ-Al_2O_3 catalysts were prepared with the impregnation method and characterized by means of the BET specific surface area, X-ray diffraction(XRD), thermogravimetric analysis(TGA) and Laser Raman spectroscopy. The Co/γ-Al_2O_3 catalysts were activated by using H_2, 20%CH_4/H_2 or CH_4, respectively. There was no obvious difference between the activities of the Co/γ-Al_2O_3 catalyst activated by using the different activation methods for methane dry reforming. The catalytic properties of the Co/γ-Al_2O_3 catalysts with different Co loadings were also investigated. The optimized Co loading for the Co/γ-Al_2O_3 catalyst pretreated with 20% CH_4/H_2 is around 12%(mass fraction).展开更多
Silicon nitride(Si_(3)N_(4))supported cobalt catalysts(Co/Si_(3)N_(4))were fabricated by using wetness impregnation procedure.The microscopic morphology,phase composition,and electronic states were characterized by XR...Silicon nitride(Si_(3)N_(4))supported cobalt catalysts(Co/Si_(3)N_(4))were fabricated by using wetness impregnation procedure.The microscopic morphology,phase composition,and electronic states were characterized by XRD,TEM,SEM,and XPS,respectively.For comparison,cobalt catalyst supported on SiO_(2)(Co/SiO_(2))was also investigated.XPS studies and DFT calculations show that the cobalt species in Co/Si_(3)N_(4) have lower valence state than those in Co/SiO_(2).The catalytic ESR reactions demonstrate that Co/Si_(3)N_(4) exhibits distinctly higher catalytic activity and hydrogen selectivity than Si_(3)N_(4) support and Co/SiO_(2) catalyst with the identical cobalt loading,indicative of the favorable effect of Si_(3)N_(4) support on the catalytic performance of supported cobalt catalyst.Durability tests and TG-DSC studies show that Co/Si_(3)N_(4) catalyst exhibits better stability and resistance to coke during the same catalytic experiment period.展开更多
文摘A series of Co/γ-Al_2O_3 catalysts were prepared with the impregnation method and characterized by means of the BET specific surface area, X-ray diffraction(XRD), thermogravimetric analysis(TGA) and Laser Raman spectroscopy. The Co/γ-Al_2O_3 catalysts were activated by using H_2, 20%CH_4/H_2 or CH_4, respectively. There was no obvious difference between the activities of the Co/γ-Al_2O_3 catalyst activated by using the different activation methods for methane dry reforming. The catalytic properties of the Co/γ-Al_2O_3 catalysts with different Co loadings were also investigated. The optimized Co loading for the Co/γ-Al_2O_3 catalyst pretreated with 20% CH_4/H_2 is around 12%(mass fraction).
基金by the National Natural Science Foundation of China(Nos.21671154,U1732147)the Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials(WKDM202210)the State Key Laboratory of Refractories(SKLAR202009)。
文摘Silicon nitride(Si_(3)N_(4))supported cobalt catalysts(Co/Si_(3)N_(4))were fabricated by using wetness impregnation procedure.The microscopic morphology,phase composition,and electronic states were characterized by XRD,TEM,SEM,and XPS,respectively.For comparison,cobalt catalyst supported on SiO_(2)(Co/SiO_(2))was also investigated.XPS studies and DFT calculations show that the cobalt species in Co/Si_(3)N_(4) have lower valence state than those in Co/SiO_(2).The catalytic ESR reactions demonstrate that Co/Si_(3)N_(4) exhibits distinctly higher catalytic activity and hydrogen selectivity than Si_(3)N_(4) support and Co/SiO_(2) catalyst with the identical cobalt loading,indicative of the favorable effect of Si_(3)N_(4) support on the catalytic performance of supported cobalt catalyst.Durability tests and TG-DSC studies show that Co/Si_(3)N_(4) catalyst exhibits better stability and resistance to coke during the same catalytic experiment period.