Extracorporeal membrane oxygenation(ECMO)has emerged as a vital circulatory life support measure for patients with critical cardiac or pulmonary conditions unresponsive to conventional therapies.ECMO allows blood to b...Extracorporeal membrane oxygenation(ECMO)has emerged as a vital circulatory life support measure for patients with critical cardiac or pulmonary conditions unresponsive to conventional therapies.ECMO allows blood to be extracted from a patient and introduced to a machine that oxygenates blood and removes carbon dioxide.This blood is then reintroduced into the patient’s circulatory system.This process makes ECMO essential for treating various medical conditions,both as a standalone therapy and as adjuvant therapy.Veno-venous(VV)ECMO primarily supports respiratory function and indicates respiratory distress.Simultaneously,veno-arterial(VA)ECMO provides hemodynamic and respiratory support and is suitable for cardiac-related complications.This study reviews recent literature to elucidate the evolving role of ECMO in trauma care,considering its procedural intricacies,indications,contraindications,and associated complications.Notably,the use of ECMO in trauma patients,particularly for acute respiratory distress syndrome and cardiogenic shock,has demonstrated promising outcomes despite challenges such as anticoagulation management and complications such as acute kidney injury,bleeding,thrombosis,and hemolysis.Some studies have shown that VV ECMO was associated with significantly higher survival rates than conventional mechanical ventilation,whereas other studies have reported that VA ECMO was associated with lower survival rates than VV ECMO.ECMO plays a critical role in managing trauma patients,particularly those with acute respiratory failure.Further research is necessary to explore the full potential of ECMO in trauma care.Clinicians should have a clear understanding of the indications and contraindications for the use of ECMO to maximize its benefits in treating trauma patients.展开更多
Upregulation of vascular endothelial growth factor A/basic fibroblast growth factor(VEGFA/b FGF)expression in the penumbra of cerebral ischemia can increase vascular volume,reduce lesion volume,and enhance neural cell...Upregulation of vascular endothelial growth factor A/basic fibroblast growth factor(VEGFA/b FGF)expression in the penumbra of cerebral ischemia can increase vascular volume,reduce lesion volume,and enhance neural cell proliferation and differentiation,thereby exerting neuroprotective effects.However,the beneficial effects of endogenous VEGFA/b FGF are limited as their expression is only transiently increased.In this study,we generated multilayered nanofiber membranes loaded with VEGFA/b FGF using layer-by-layer self-assembly and electrospinning techniques.We found that a membrane containing 10 layers had an ideal ultrastructure and could efficiently and stably release growth factors for more than 1 month.This 10-layered nanofiber membrane promoted brain microvascular endothelial cell tube formation and proliferation,inhibited neuronal apoptosis,upregulated the expression of tight junction proteins,and improved the viability of various cellular components of neurovascular units under conditions of oxygen/glucose deprivation.Furthermore,this nanofiber membrane decreased the expression of Janus kinase-2/signal transducer and activator of transcription-3(JAK2/STAT3),Bax/Bcl-2,and cleaved caspase-3.Therefore,this nanofiber membrane exhibits a neuroprotective effect on oxygen/glucose-deprived neurovascular units by inhibiting the JAK2/STAT3 pathway.展开更多
Membrane technologies are becoming increasingly versatile and helpful today for sustainable development.Machine Learning(ML),an essential branch of artificial intelligence(AI),has substantially impacted the research an...Membrane technologies are becoming increasingly versatile and helpful today for sustainable development.Machine Learning(ML),an essential branch of artificial intelligence(AI),has substantially impacted the research and development norm of new materials for energy and environment.This review provides an overview and perspectives on ML methodologies and their applications in membrane design and dis-covery.A brief overview of membrane technologies isfirst provided with the current bottlenecks and potential solutions.Through an appli-cations-based perspective of AI-aided membrane design and discovery,we further show how ML strategies are applied to the membrane discovery cycle(including membrane material design,membrane application,membrane process design,and knowledge extraction),in various membrane systems,ranging from gas,liquid,and fuel cell separation membranes.Furthermore,the best practices of integrating ML methods and specific application targets in membrane design and discovery are presented with an ideal paradigm proposed.The challenges to be addressed and prospects of AI applications in membrane discovery are also highlighted in the end.展开更多
Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,t...Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,the anion exchange membrane(AEM) water electrolysis has gained intensive attention and is considered as the next-generation emerging technology due to its potential advantages,such as the use of low-cost non-noble metal catalysts,the relatively mature stack assembly process,etc.However,the AEM water electrolyzer is still in the early development stage of the kW-level stack,which is mainly attributed to severe performance decay caused by the core component,i.e.,AEM.Here,the review comprehensively presents the recent progress of advanced AEM from the view of the performance of water electrolysis cells.Herein,fundamental principles and critical components of AEM water electrolyzers are introduced,and work conditions of AEM water electrolyzers and AEM performance improvement strategies are discussed.The challenges and perspectives are also analyzed.展开更多
Nanofluidic channels inspired by electric eels open a new era of efficient harvesting of clean blue osmotic energy from salinity gradients.Limited by less charge and weak ion selectivity of the raw material itself,ene...Nanofluidic channels inspired by electric eels open a new era of efficient harvesting of clean blue osmotic energy from salinity gradients.Limited by less charge and weak ion selectivity of the raw material itself,energy conversion through nanofluidic channels is still facing considerable challenges.Here,a facile and efficient strategy to enhance osmotic energy harvesting based on drastically increasing surface charge density of MXenes subnanochannels via oxygen plasma is proposed.This plasma could break Ti–C bonds in the MXenes subnanochannels and effectively facilitate the formation of more Ti–O,C═O,O–OH,and rutile with a stronger negative charge and work function,which leads the surface potential of MXenes membrane to increase from 205 to 430 mV.This significant rise of surface charge endows the MXenes membrane with high cation selectivity,which could make the output power density of the MXenes membrane increase by 248.2%,reaching a high value of 5.92Wm^(−2) in the artificial sea‐river water system.Furthermore,with the assistance of low‐quality heat at 50℃,the osmotic power is enhanced to an ultrahigh value of 9.68Wm^(−2),which outperforms those of the state‐of‐the‐art two‐dimensional(2D)nanochannel membranes.This exciting breakthrough demonstrates the enormous potential of the facile plasma‐treated 2D membranes for osmotic energy harvesting.展开更多
Elaidic acid(EA)stimulation can lead to endoplasmic reticulum stress(ERS),accompanied by a large release of Ca^(2+),and ultimately the activation of NLRP3 inflammasome in Kupffer cells(KCs).Mitochondrial instability o...Elaidic acid(EA)stimulation can lead to endoplasmic reticulum stress(ERS),accompanied by a large release of Ca^(2+),and ultimately the activation of NLRP3 inflammasome in Kupffer cells(KCs).Mitochondrial instability or dysfunction may be the key stimulating factors to activate NLRP3 inflammasome,and sustained Ca^(2+)transfer can result in mitochondrial dysfunction.We focused on KCs to explore the damage to mitochondria by EA.After EA stimulation,cells produced an oxidative stress(OS)response with a significant increase in ROS release.Immunoprecipitation experiments and the addition of inhibitors revealed that the increase in the level of intracellular Ca^(2+)led to Ca^(2+)accumulation in the mitochondrial matrix via mitochondria-associated membranes(MAMs).This was accompanied by a significant release of m ROS,loss of MMP and ATP,and a significant increase in mitochondrial permeability transition pore opening,ultimately leading to mitochondrial instability.These findings confirmed the mechanism that EA induced mitochondrial Ca^(2+)imbalance in KCs via MAM,ultimately leading to mitochondrial dysfunction.Meanwhile,EA induced OS and the decrease of MMP and ATP in rat liver,and significant lesions were found in liver mitochondria.Swelling of the inner mitochondrial cristae and mitochondrial vacuolization occurred,with a marked increase in lipid droplets.展开更多
Thermoregulatory textiles,leveraging high-emissivity structural materials,have arisen as a promising candidate for personal cooling management;however,their advancement has been hindered by the underperformed water mo...Thermoregulatory textiles,leveraging high-emissivity structural materials,have arisen as a promising candidate for personal cooling management;however,their advancement has been hindered by the underperformed water moisture transportation capacity,which impacts on their thermophysiological comfort.Herein,we designed a wettability-gradient-induced-diode(WGID)membrane achieving by MXene-engineered electrospun technology,which could facilitate heat dissipation and moisture-wicking transportation.As a result,the obtained WGID membrane could obtain a cooling temperature of 1.5℃ in the“dry”state,and 7.1℃ in the“wet”state,which was ascribed to its high emissivity of 96.40%in the MIR range,superior thermal conductivity of 0.3349 W m^(-1) K^(-1)(based on radiation-and conduction-controlled mechanisms),and unidirectional moisture transportation property.The proposed design offers an approach for meticulously engineering electrospun membranes with enhanced heat dissipation and moisture transportation,thereby paving the way for developing more efficient and comfortable thermoregulatory textiles in a high-humidity microenvironment.展开更多
Aqueous organic redox flow batteries(AORFBs),which exploit the reversible electrochemical reactions of water-soluble organic electrolytes to store electricity,have emerged as an efficient electrochemical energy storag...Aqueous organic redox flow batteries(AORFBs),which exploit the reversible electrochemical reactions of water-soluble organic electrolytes to store electricity,have emerged as an efficient electrochemical energy storage technology for the grid-scale integration of renewable electricity.pH-neutral AORFBs that feature high safety,low corrosivity,and environmental benignity are particularly promising,and their battery performance is significantly impacted by redox-active molecules and ion-exchange membranes(IEMs).Here,representative anolytes and catholytes engineered for use in pH-neutral AORFBs are outlined and summarized,as well as their side reactions that cause irreversible battery capacity fading.In addition,the recent achievements of IEMs for pH-neutral AORFBs are discussed,with a focus on the construction and tuning of ion transport channels.Finally,the critical challenges and potential research opportunities for developing practically relevant pH-neutral AORFBs are presented.展开更多
Nanofiber membranes(NFMs) have become attractive candidates for next-generation flexible transparent materials due to their exceptional flexibility and breathability. However, improving the transmittance of NFMs is a ...Nanofiber membranes(NFMs) have become attractive candidates for next-generation flexible transparent materials due to their exceptional flexibility and breathability. However, improving the transmittance of NFMs is a great challenge due to the enormous reflection and incredibly poor transmission generated by the nanofiber-air interface. In this research, we report a general strategy for the preparation of flexible temperature-responsive transparent(TRT) membranes,which achieves a rapid transformation of NFMs from opaque to highly transparent under a narrow temperature window. In this process, the phase change material eicosane is coated on the surface of the polyurethane nanofibers by electrospray technology. When the temperature rises to 37 ℃, eicosane rapidly completes the phase transition and establishes the light transmission path between the nanofibers, preventing light loss from reflection at the nanofiber-air interface. The resulting TRT membrane exhibits high transmittance(> 90%), and fast response(5 s). This study achieves the first TRT transition of NFMs, offering a general strategy for building highly transparent nanofiber materials, shaping the future of next-generation intelligent temperature monitoring, anti-counterfeiting measures, and other high-performance devices.展开更多
The occurrence of ultrafiltration(UF)membrane fouling frequently hampers the sustainable advancement of UF technology.Reactive self-cleaning UF membranes can effectively alleviate the problem of membrane fouling.Never...The occurrence of ultrafiltration(UF)membrane fouling frequently hampers the sustainable advancement of UF technology.Reactive self-cleaning UF membranes can effectively alleviate the problem of membrane fouling.Nevertheless,the self-cleaning process may accelerate membrane aging.Addressing these concerns,we present an innovative design concept for composite self-healing materials based on self-cleaning UF membranes.To begin,TiO_(2)nanoparticles were incorporated into the polymer molecular structure via molecular design,resulting in the synthesis of TiO_(2)/carboxyl-polyether sulfone(PES)hybrid materials.Subsequently,the nonsolvent-induced phase inversion technique was employed to prepare a novel of UF membrane.Lastly,a polyvinyl alcohol(PVA)hydrogel coating was applied to the hybrid UF membrane surface to create PVA@TiO_(2)/carboxyl-PES self-healing reactive UF membranes.By establishing a covalent bond,the TiO_(2)nanoparticles were effectively and uniformly dispersed within the UF membrane,leading to exceptional self-cleaning properties.Furthermore,the water-absorbing and swelling properties of PVA hydrogel,along with its capacity to form hydrogen bonds with water molecules,resulted in UF membranes with improved hydrophilicity and active self-healing abilities.The results demonstrated that the water contact angle of PVA@5%TiO_(2)/carboxyl-PES UF membrane was 43.1°.Following a 1-h exposure to simulated solar exposure,the water flux recovery ratio increased from 48.16%to 81.03%.Moreover,even after undergoing five cycles of 12-h simulated sunlight exposure,the UF membranes exhibited a consistent retention rate of over 97%,thus fully demonstrating their exceptional self-cleaning,antifouling,and selfhealing capabilities.We anticipate that the self-healing reactive UF membrane system will serve as a pioneering and comprehensive solution for the self-cleaning antifouling challenges encountered in UF membranes while also effectively mitigating the aging effects of reactive UF membranes.展开更多
For the reduction of bovine serum proteins from wastewater,a novel mixed matrix membrane was prepared by functionalizing the substrate material polyaryletherketone(PAEK),followed by carboxyl groups(C-SPAEKS),and then ...For the reduction of bovine serum proteins from wastewater,a novel mixed matrix membrane was prepared by functionalizing the substrate material polyaryletherketone(PAEK),followed by carboxyl groups(C-SPAEKS),and then adding amino-functionalized UiO-66-NH_(2)(Am-UiO-66-NH_(2)).Aminofunctionalization of UiO-66 was accomplished by melamine,followed by an amidation reaction to immobilize Am-UiO-66-NH_(2),which was immobilized on the surface of the membrane as well as in the pore channels,which enhanced the hydrophilicity of the membrane surface while increasing the negative potential of the membrane surface.This nanoparticle-loaded ultrafiltration membrane has good permeation performance,with a pure water flux of up to 482.3 L·m^(-2)·h^(-1) for C-SPAEKS/AmUiO-66-NH_(2) and a retention rate of up to 98.7%for bovine serum albumin(BSA)-contaminated solutions.Meanwhile,after several hydrophilic modifications,the flux recovery of BSA contaminants by this series of membranes increased from 56.2%to 80.55%of pure membranes.The results of ultra-filtration flux time tests performed at room temperature showed that the series of ultrafiltration membranes remained relatively stable over a test time of 300 min.Thus,the newly developed mixed matrix membrane showed potential for high efficiency and stability in wastewater treatment containing bovine serum proteins.展开更多
The separation of aromatic/aliphatic hydrocarbon mixtures is crucial in the petrochemical industry.Pervaporation is regarded as a promising approach for the separation of aromatic compounds from alkanes. Developing me...The separation of aromatic/aliphatic hydrocarbon mixtures is crucial in the petrochemical industry.Pervaporation is regarded as a promising approach for the separation of aromatic compounds from alkanes. Developing membrane materials with efficient separation performance is still the main task since the membrane should provide chemical stability, high permeation flux, and selectivity. In this study, the hyperbranched polymer(HBP) was deposited on the outer surface of a polyvinylidene fluoride(PVDF)hollow-fiber ultrafiltration membrane by a facile dip-coating method. The dip-coating rate, HBP concentration, and thermal cross-linking temperature were regulated to optimize the membrane structure.The obtained HBP/PVDF hollow-fiber-composite membrane had a good separation performance for aromatic/aliphatic hydrocarbon mixtures. For the 50%/50%(mass) toluene/n-heptane mixture, the permeation flux of optimized composite membranes could reach 1766 g·m^(-2)·h^(-1), with a separation factor of 4.1 at 60℃. Therefore, the HBP/PVDF hollow-fiber-composite membrane has great application prospects in the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures.展开更多
Mixed matrix membranes(MMMs)could combine the advantages of both polymeric membranes and porousfillers,making them an effective alternative to conventional polymer membranes.However,interfacial incompatibility issues,s...Mixed matrix membranes(MMMs)could combine the advantages of both polymeric membranes and porousfillers,making them an effective alternative to conventional polymer membranes.However,interfacial incompatibility issues,such as the presence of interfacial voids,hardening of polymer chains,and blockage of micropores by polymers between common MMMsfillers and the polymer matrix,currently limit the gas sep-aration performance of MMMs.Ternary phase MMMs(consisting of afiller,an additive,and a matrix)made by adding a third compound,usually functionalized additives,can overcome the structural problems of binary phase MMMs and positively impact membrane separation performance.This review introduces the structure and fabrication processes for ternary MMMs,categorizes various nanofillers and the third component,and summarizes and analyzes in detail the CO_(2) separation performance of newly developed ternary MMMs based on both rubbery and glassy polymers.Based on this separation data,the challenges of ternary MMMs are also discussed.Finally,future directions for ternary MMMs are proposed.展开更多
This work focuses on the development of high temperature polymer electrolyte membranes(HT-PEMs)as key materials for HT-PEM fuel cells(HT-PEMFCs).Recognizing the challenges associated with the phosphoric acid(PA) doped...This work focuses on the development of high temperature polymer electrolyte membranes(HT-PEMs)as key materials for HT-PEM fuel cells(HT-PEMFCs).Recognizing the challenges associated with the phosphoric acid(PA) doped polybenzimidazole(PBI) membranes,including the use of carcinogenic monomers and complex synthesis procedures,this study aims to develop more cost-effective,readily synthesized,and high-performance alternatives.A series of superacid-catalyzed polyhydroxyalkylation reactions have been carefully designed between p-terphenyl and aldehydes bearing imidazole moieties,resulting in a new class of HT-PEMs.It is found that the chemical structure of aldehyde-substituted N-heterocycles significantly impacts the polymerization reaction.Specifically,the use of 1-methyl-2-imidazole-formaldehyde and 1 H-imidazole-4-formaldehyde monomers leads to the formation of high-viscosity,rigid,and ether-free polymers,denoted as PTIm-a and PTIm-b.Membranes fabricated from these polymers,due to their pendent imidazole groups,exhibit an exceptional capacity for PA absorption.Notably,PTIm-a,carrying methylimidazole moieties,demonstrates a superior chemical stability by maintaining morphology and structural stability during 350 h of Fenton testing.After being immersed in 75 wt% PA at 40℃,the PTIm-a membrane reaches a PA content of 152%,maintains a good tensile strength of 13.6 MPa,and exhibits a moderate conductivity of 50.2 mS cm^(-1) at 180℃.Under H_(2)/O_(2) operational conditions,a single cell based on the PTIm-a membrane attains a peak power density of 732 mW cm^(-2) at 180℃ without backpressure.Furthermore,the membrane demonstrates stable cycle stability over 173 h within 18 days at a current density of 200 mA cm^(-2),indicating its potential for practical application in HT-PEMFCs.This work highlights innovative strategies for the synthesis of advanced HT-PEMs,offering significant improvements in membrane properties and fuel cell performance,thus expanding the horizons of HT-PEMFC technology.展开更多
A lightweight flexible thermally stable composite is fabricated by com-bining silica nanofiber membranes(SNM)with MXene@c-MWCNT hybrid film.The flexible SNM with outstanding thermal insulation are prepared from tetrae...A lightweight flexible thermally stable composite is fabricated by com-bining silica nanofiber membranes(SNM)with MXene@c-MWCNT hybrid film.The flexible SNM with outstanding thermal insulation are prepared from tetraethyl orthosilicate hydrolysis and condensation by electrospinning and high-temperature calcination;the MXene@c-MWCNT_(x:y)films are prepared by vacuum filtration tech-nology.In particular,the SNM and MXene@c-MWCNT_(6:4)as one unit layer(SMC_(1))are bonded together with 5 wt%polyvinyl alcohol(PVA)solution,which exhibits low thermal conductivity(0.066 W m^(-1)K^(-1))and good electromagnetic interference(EMI)shielding performance(average EMI SE_(T),37.8 dB).With the increase in func-tional unit layer,the overall thermal insulation performance of the whole composite film(SMC_(x))remains stable,and EMI shielding performance is greatly improved,especially for SMC_(3)with three unit layers,the average EMI SET is as high as 55.4 dB.In addition,the organic combination of rigid SNM and tough MXene@c-MWCNT_(6:4)makes SMC_(x)exhibit good mechanical tensile strength.Importantly,SMC_(x)exhibit stable EMI shielding and excellent thermal insulation even in extreme heat and cold environment.Therefore,this work provides a novel design idea and important reference value for EMI shielding and thermal insulation components used in extreme environmental protection equipment in the future.展开更多
Based on chemical thermodynamic theory, racemic ofloxacin is separated in chiral sys-tems by hollow fiber liquid-supported membrane technology combining with countercurrently frac-tional extraction. The two chiral sol...Based on chemical thermodynamic theory, racemic ofloxacin is separated in chiral sys-tems by hollow fiber liquid-supported membrane technology combining with countercurrently frac-tional extraction. The two chiral solutions containing L-dibenzoyltartaric acid and D-dibenzoylta- rtaric acid in 1-octanol, flow through the lumen side and the shell side of fibers, respectively. The solution which flows through the lumen side of fibers also contains racemic ofloxacin. The wall of hollow fibers is filled with an aqueous of 0.1 mol/L Na2HPO4/H3PO4 buffer solution of pH = 6.86 containing 2 mmol/L of cetyltrimethyl ammonium bromide for 48 h. The fairly polar ofloxacin can cross the membrane back and forth, but dibenzoyltartaric acids cannot cross it. Fractional chiral extraction theory, mass transfer performance of hollow fiber membrane and enantioselectivity are investigated. Mathematical model of R/S = 0.96e0.03NTU for racemic ofloxacin separation by hollow fiber extraction, is established. The optical purity for ofloxacin enantiomers is up to 90% when 11 hollow fiber membrane modules of 22 cm in length in series are used.展开更多
Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects ...Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects and possible underlying mechanisms of MFGM on cow’s milk allergy(CMA)in aβ-lactoglobulin(BLG)-induced allergic mice model.MFGM was supplemented to allergic mice induced by BLG at a dose of 400 mg/kg body weight.Results demonstrated that MFGM alleviated food allergy symptoms,decreased serum levels of lipopolysaccharide,pro-inflammatory cytokines,immunoglobulin(Ig)E,Ig G1,and Th2 cytokines including interleukin(IL)-4,while increased serum levels of Th1 cytokines including interferon-γand regulatory T cells(Tregs)cytokines including IL-10 and transforming growth factor-β.MFGM modulated gut microbiota and enhanced intestinal barrier of BLG-allergic mice,as evidenced by decreased relative abundance of Desulfobacterota,Rikenellaceae,Lachnospiraceae,and Desulfovibrionaceae,while increased relative abundance of Bacteroidetes,Lactobacillaceae and Muribaculaceae,and enhanced expressions of tight junction proteins including Occludin,Claudin-1 and zonula occludens-1.Furthermore,MFGM increased fecal short-chain fatty acids(SCFAs)levels,which elevated G protein-coupled receptor(GPR)43 and GPR109A expressions.The increased expressions of GPR43 and GPR109A induced CD103+dendritic cells accumulation and promoted Tregs differentiation in mesenteric lymph node to a certain extent.In summary,MFGM alleviated CMA in a BLG-induced allergic mice model through enhancing intestinal barrier and promoting Tregs differentiation,which may be correlated with SCFAs-mediated activation of GPRs.These findings suggest that MFGM may be useful as a promising functional ingredient against CMA.展开更多
Bipolar membranes(BPMs)exhibit the unique capability to regulate the operating environment of electrochemical system through the water dissociation-combination processes.However,the industrial utilization of BPMs is l...Bipolar membranes(BPMs)exhibit the unique capability to regulate the operating environment of electrochemical system through the water dissociation-combination processes.However,the industrial utilization of BPMs is limited by instability and serious energy consumption.The current-induced membrane discharge(CIMD)at high-current conditions has a negative influence on the performance of anion-exchange membranes,but the underlying ion transport mechanisms in the BPMs remain unclear.Here,the CIMD-coupled Poisson-Nernst-Planck(PNP)equations are used to explore the ion transport mechanisms in the BPMs for both reverse bias and forward bias at neutral and acid-base conditions.It is demonstrated that the CIMD effect in the reverse-bias mode can be suppressed by enhancing the diffusive transport of salt counter-ions(Na^(+)and Cl^(−))into the BPMs,and that in the forward-bias mode with acid-base electrolytes can be suppressed by matching the transport rate of water counter-ions(H_(3)O^(+)and OH^(−)).Suppressing the CIMD can promote the water dissociation in the reverse-bias mode,as well as overcome the plateau of limiting current density and reduce the interfacial blockage of salt co-ions(Cl^(−))in the anion-exchange layer in the forward-bias mode with acid-base electrolytes.Our work highlights the importance of regulating ion crossover transport on improving the performance of BPMs.展开更多
For the application of carbon capture by membrane process,it is crucial to develop a highly permeable CO_(2)-selective membrane.In this work,we reported an ultra-thin polyether-block-amide(Pebax)mixedmatrix membranes(...For the application of carbon capture by membrane process,it is crucial to develop a highly permeable CO_(2)-selective membrane.In this work,we reported an ultra-thin polyether-block-amide(Pebax)mixedmatrix membranes(MMMs)incorporated by graphene oxide(GO),in which the interlayer channels were regulated to optimize the CO_(2)/N_(2) separation performance.Various membrane preparation conditions were systematically investigated on the influence of the membrane structure and separation performance,including the lateral size of GO nanosheets,GO loading,thermal reduction temperature,and time.The results demonstrated that the precisely regulated interlayer channel of GO nanosheets can rapidly provide CO_(2)-selective transport channels due to the synergetic effects of size sieving and preferential adsorption.The GO/Pebax ultra-thin MMMs exhibited CO_(2)/N_(2) selectivity of 72 and CO_(2) permeance of 400 GPU(1 GPU=106 cm^(3)(STP)·cm^(2)·s^(-1)·cmHg^(-1)),providing a promising candidate for CO_(2) capture.展开更多
Membrane tension plays a crucial role in various fundamental cellular processes,with one notable example being the T cell-mediated elimination of tumor cells through perforin-induced membrane perforation by amplifying...Membrane tension plays a crucial role in various fundamental cellular processes,with one notable example being the T cell-mediated elimination of tumor cells through perforin-induced membrane perforation by amplifying cellular force.However,the mechanisms governing the regulation of biomolecular activities at the cell interface by membrane tension remain elusive.In this study,we investigated the correlation between membrane tension and poration activity of melittin,a prototypical pore-forming peptide,using dynamic giant unilamellar vesicle leakage assays combined with flickering tension analysis,molecular dynamics simulations,and live cell assays.The results demonstrate that an increase in membrane tension enhances the activity of melittin,particularly near its critical pore-forming concentration.Moreover,peptide actions such as binding,insertion,and aggregation in the membrane further influence the evolution of membrane tension.Live cell experiments reveal that artificially enhancing membrane tension effectively enhances melittin’s ability to induce pore formation and disrupt membranes,resulting in up to a ten-fold increase in A549 cell mortality when exposed to a concentration of 2.0-μg·mL^(-1)melittin.Our findings elucidate the relationship between membrane tension and the mechanism of action as well as pore-forming efficiency of melittin,while providing a practical mechanical approach for regulating functional activity of molecules at the cell-membrane interface.展开更多
文摘Extracorporeal membrane oxygenation(ECMO)has emerged as a vital circulatory life support measure for patients with critical cardiac or pulmonary conditions unresponsive to conventional therapies.ECMO allows blood to be extracted from a patient and introduced to a machine that oxygenates blood and removes carbon dioxide.This blood is then reintroduced into the patient’s circulatory system.This process makes ECMO essential for treating various medical conditions,both as a standalone therapy and as adjuvant therapy.Veno-venous(VV)ECMO primarily supports respiratory function and indicates respiratory distress.Simultaneously,veno-arterial(VA)ECMO provides hemodynamic and respiratory support and is suitable for cardiac-related complications.This study reviews recent literature to elucidate the evolving role of ECMO in trauma care,considering its procedural intricacies,indications,contraindications,and associated complications.Notably,the use of ECMO in trauma patients,particularly for acute respiratory distress syndrome and cardiogenic shock,has demonstrated promising outcomes despite challenges such as anticoagulation management and complications such as acute kidney injury,bleeding,thrombosis,and hemolysis.Some studies have shown that VV ECMO was associated with significantly higher survival rates than conventional mechanical ventilation,whereas other studies have reported that VA ECMO was associated with lower survival rates than VV ECMO.ECMO plays a critical role in managing trauma patients,particularly those with acute respiratory failure.Further research is necessary to explore the full potential of ECMO in trauma care.Clinicians should have a clear understanding of the indications and contraindications for the use of ECMO to maximize its benefits in treating trauma patients.
基金supported by the National Natural Science Foundation of China,Nos.81974207(to JH),82001383(to DW)the Special Clinical Research Project of Health Profession of Shanghai Municipal Health Commission,No.20204Y0076(to DW)。
文摘Upregulation of vascular endothelial growth factor A/basic fibroblast growth factor(VEGFA/b FGF)expression in the penumbra of cerebral ischemia can increase vascular volume,reduce lesion volume,and enhance neural cell proliferation and differentiation,thereby exerting neuroprotective effects.However,the beneficial effects of endogenous VEGFA/b FGF are limited as their expression is only transiently increased.In this study,we generated multilayered nanofiber membranes loaded with VEGFA/b FGF using layer-by-layer self-assembly and electrospinning techniques.We found that a membrane containing 10 layers had an ideal ultrastructure and could efficiently and stably release growth factors for more than 1 month.This 10-layered nanofiber membrane promoted brain microvascular endothelial cell tube formation and proliferation,inhibited neuronal apoptosis,upregulated the expression of tight junction proteins,and improved the viability of various cellular components of neurovascular units under conditions of oxygen/glucose deprivation.Furthermore,this nanofiber membrane decreased the expression of Janus kinase-2/signal transducer and activator of transcription-3(JAK2/STAT3),Bax/Bcl-2,and cleaved caspase-3.Therefore,this nanofiber membrane exhibits a neuroprotective effect on oxygen/glucose-deprived neurovascular units by inhibiting the JAK2/STAT3 pathway.
基金This work is supported by the National Key R&D Program of China(No.2022ZD0117501)the Singapore RIE2020 Advanced Manufacturing and Engineering Programmatic Grant by the Agency for Science,Technology and Research(A*STAR)under grant no.A1898b0043Tsinghua University Initiative Scientific Research Program and Low Carbon En-ergy Research Funding Initiative by A*STAR under grant number A-8000182-00-00.
文摘Membrane technologies are becoming increasingly versatile and helpful today for sustainable development.Machine Learning(ML),an essential branch of artificial intelligence(AI),has substantially impacted the research and development norm of new materials for energy and environment.This review provides an overview and perspectives on ML methodologies and their applications in membrane design and dis-covery.A brief overview of membrane technologies isfirst provided with the current bottlenecks and potential solutions.Through an appli-cations-based perspective of AI-aided membrane design and discovery,we further show how ML strategies are applied to the membrane discovery cycle(including membrane material design,membrane application,membrane process design,and knowledge extraction),in various membrane systems,ranging from gas,liquid,and fuel cell separation membranes.Furthermore,the best practices of integrating ML methods and specific application targets in membrane design and discovery are presented with an ideal paradigm proposed.The challenges to be addressed and prospects of AI applications in membrane discovery are also highlighted in the end.
基金supported by the National Key Research and Development Program(2022YFB4202200)the Fundamental Research Funds for the Central Universities and sponsored by Shanghai Pujiang Program(22PJ1413100)。
文摘Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,the anion exchange membrane(AEM) water electrolysis has gained intensive attention and is considered as the next-generation emerging technology due to its potential advantages,such as the use of low-cost non-noble metal catalysts,the relatively mature stack assembly process,etc.However,the AEM water electrolyzer is still in the early development stage of the kW-level stack,which is mainly attributed to severe performance decay caused by the core component,i.e.,AEM.Here,the review comprehensively presents the recent progress of advanced AEM from the view of the performance of water electrolysis cells.Herein,fundamental principles and critical components of AEM water electrolyzers are introduced,and work conditions of AEM water electrolyzers and AEM performance improvement strategies are discussed.The challenges and perspectives are also analyzed.
基金National Natural Science Foundation of China,Grant/Award Number:52175174China Postdoctoral Science Foundation,Grant/Award Number:2022M721791National Key Research and Development Program of China,Grant/Award Number:2020YFA0711003。
文摘Nanofluidic channels inspired by electric eels open a new era of efficient harvesting of clean blue osmotic energy from salinity gradients.Limited by less charge and weak ion selectivity of the raw material itself,energy conversion through nanofluidic channels is still facing considerable challenges.Here,a facile and efficient strategy to enhance osmotic energy harvesting based on drastically increasing surface charge density of MXenes subnanochannels via oxygen plasma is proposed.This plasma could break Ti–C bonds in the MXenes subnanochannels and effectively facilitate the formation of more Ti–O,C═O,O–OH,and rutile with a stronger negative charge and work function,which leads the surface potential of MXenes membrane to increase from 205 to 430 mV.This significant rise of surface charge endows the MXenes membrane with high cation selectivity,which could make the output power density of the MXenes membrane increase by 248.2%,reaching a high value of 5.92Wm^(−2) in the artificial sea‐river water system.Furthermore,with the assistance of low‐quality heat at 50℃,the osmotic power is enhanced to an ultrahigh value of 9.68Wm^(−2),which outperforms those of the state‐of‐the‐art two‐dimensional(2D)nanochannel membranes.This exciting breakthrough demonstrates the enormous potential of the facile plasma‐treated 2D membranes for osmotic energy harvesting.
基金supported by fund from the National Natural Science Foundation of China(32172322)。
文摘Elaidic acid(EA)stimulation can lead to endoplasmic reticulum stress(ERS),accompanied by a large release of Ca^(2+),and ultimately the activation of NLRP3 inflammasome in Kupffer cells(KCs).Mitochondrial instability or dysfunction may be the key stimulating factors to activate NLRP3 inflammasome,and sustained Ca^(2+)transfer can result in mitochondrial dysfunction.We focused on KCs to explore the damage to mitochondria by EA.After EA stimulation,cells produced an oxidative stress(OS)response with a significant increase in ROS release.Immunoprecipitation experiments and the addition of inhibitors revealed that the increase in the level of intracellular Ca^(2+)led to Ca^(2+)accumulation in the mitochondrial matrix via mitochondria-associated membranes(MAMs).This was accompanied by a significant release of m ROS,loss of MMP and ATP,and a significant increase in mitochondrial permeability transition pore opening,ultimately leading to mitochondrial instability.These findings confirmed the mechanism that EA induced mitochondrial Ca^(2+)imbalance in KCs via MAM,ultimately leading to mitochondrial dysfunction.Meanwhile,EA induced OS and the decrease of MMP and ATP in rat liver,and significant lesions were found in liver mitochondria.Swelling of the inner mitochondrial cristae and mitochondrial vacuolization occurred,with a marked increase in lipid droplets.
基金financial support from the National Natural Science Foundation of China(“Study of Multi-Responsive Shape Memory Polyurethane Nanocomposites Inspired by Natural Fibers”,Grant No.51673162)Startup Grant of CityU(“Laboratory of Wearable Materials for Healthcare”,Grant No.9380116).CityU PhD Scholarship.
文摘Thermoregulatory textiles,leveraging high-emissivity structural materials,have arisen as a promising candidate for personal cooling management;however,their advancement has been hindered by the underperformed water moisture transportation capacity,which impacts on their thermophysiological comfort.Herein,we designed a wettability-gradient-induced-diode(WGID)membrane achieving by MXene-engineered electrospun technology,which could facilitate heat dissipation and moisture-wicking transportation.As a result,the obtained WGID membrane could obtain a cooling temperature of 1.5℃ in the“dry”state,and 7.1℃ in the“wet”state,which was ascribed to its high emissivity of 96.40%in the MIR range,superior thermal conductivity of 0.3349 W m^(-1) K^(-1)(based on radiation-and conduction-controlled mechanisms),and unidirectional moisture transportation property.The proposed design offers an approach for meticulously engineering electrospun membranes with enhanced heat dissipation and moisture transportation,thereby paving the way for developing more efficient and comfortable thermoregulatory textiles in a high-humidity microenvironment.
基金funded by the National Key Research and Development Program of China(Nos.2022YFB3805303,2022YFB3805304)the National Natural Science Foundation of China(Grant/Award Numbers:22308345,U20A20127)+1 种基金the Anhui Provincial Natural Science Foundation(No.2308085QB68)the Fundamental Research Funds for the Central Universities(No.WK2060000059).
文摘Aqueous organic redox flow batteries(AORFBs),which exploit the reversible electrochemical reactions of water-soluble organic electrolytes to store electricity,have emerged as an efficient electrochemical energy storage technology for the grid-scale integration of renewable electricity.pH-neutral AORFBs that feature high safety,low corrosivity,and environmental benignity are particularly promising,and their battery performance is significantly impacted by redox-active molecules and ion-exchange membranes(IEMs).Here,representative anolytes and catholytes engineered for use in pH-neutral AORFBs are outlined and summarized,as well as their side reactions that cause irreversible battery capacity fading.In addition,the recent achievements of IEMs for pH-neutral AORFBs are discussed,with a focus on the construction and tuning of ion transport channels.Finally,the critical challenges and potential research opportunities for developing practically relevant pH-neutral AORFBs are presented.
基金financially supported by National Key Research and Development Program of China (2022YFB3804903, 2022YFB3804900)the National Natural Science Foundation of China (No. 52273052)+2 种基金the Fundamental Research Funds for the Central Universities (No. 2232023Y01)the Program of Shanghai Academic/Technology Research Leader (No. 21XD1420100)the International Cooperation Fund of Science and Technology Commission of Shanghai Municipality (No. 21130750100)。
文摘Nanofiber membranes(NFMs) have become attractive candidates for next-generation flexible transparent materials due to their exceptional flexibility and breathability. However, improving the transmittance of NFMs is a great challenge due to the enormous reflection and incredibly poor transmission generated by the nanofiber-air interface. In this research, we report a general strategy for the preparation of flexible temperature-responsive transparent(TRT) membranes,which achieves a rapid transformation of NFMs from opaque to highly transparent under a narrow temperature window. In this process, the phase change material eicosane is coated on the surface of the polyurethane nanofibers by electrospray technology. When the temperature rises to 37 ℃, eicosane rapidly completes the phase transition and establishes the light transmission path between the nanofibers, preventing light loss from reflection at the nanofiber-air interface. The resulting TRT membrane exhibits high transmittance(> 90%), and fast response(5 s). This study achieves the first TRT transition of NFMs, offering a general strategy for building highly transparent nanofiber materials, shaping the future of next-generation intelligent temperature monitoring, anti-counterfeiting measures, and other high-performance devices.
基金supported by the National Natural Science Foundation of China(51978133,52100026,U20A20322,52170151,51978132)the Fundamental Research Funds for the Central Universities of China(2412021QD022)+1 种基金the Key Research and Development Project of Hainan Province(ZDYF2022SHFZ298)the Industrialization Cultivation Project of Jilin Provincial Department of Education(JJKH20221174CY)。
文摘The occurrence of ultrafiltration(UF)membrane fouling frequently hampers the sustainable advancement of UF technology.Reactive self-cleaning UF membranes can effectively alleviate the problem of membrane fouling.Nevertheless,the self-cleaning process may accelerate membrane aging.Addressing these concerns,we present an innovative design concept for composite self-healing materials based on self-cleaning UF membranes.To begin,TiO_(2)nanoparticles were incorporated into the polymer molecular structure via molecular design,resulting in the synthesis of TiO_(2)/carboxyl-polyether sulfone(PES)hybrid materials.Subsequently,the nonsolvent-induced phase inversion technique was employed to prepare a novel of UF membrane.Lastly,a polyvinyl alcohol(PVA)hydrogel coating was applied to the hybrid UF membrane surface to create PVA@TiO_(2)/carboxyl-PES self-healing reactive UF membranes.By establishing a covalent bond,the TiO_(2)nanoparticles were effectively and uniformly dispersed within the UF membrane,leading to exceptional self-cleaning properties.Furthermore,the water-absorbing and swelling properties of PVA hydrogel,along with its capacity to form hydrogen bonds with water molecules,resulted in UF membranes with improved hydrophilicity and active self-healing abilities.The results demonstrated that the water contact angle of PVA@5%TiO_(2)/carboxyl-PES UF membrane was 43.1°.Following a 1-h exposure to simulated solar exposure,the water flux recovery ratio increased from 48.16%to 81.03%.Moreover,even after undergoing five cycles of 12-h simulated sunlight exposure,the UF membranes exhibited a consistent retention rate of over 97%,thus fully demonstrating their exceptional self-cleaning,antifouling,and selfhealing capabilities.We anticipate that the self-healing reactive UF membrane system will serve as a pioneering and comprehensive solution for the self-cleaning antifouling challenges encountered in UF membranes while also effectively mitigating the aging effects of reactive UF membranes.
基金financial support of this work by Natural Science Foundation of China(22075031,51673030,51603017 and 51803011)Jilin Provincial Science&Technology Department(20220201105GX)Chang Bai Mountain Scholars Program of Jilin Province.
文摘For the reduction of bovine serum proteins from wastewater,a novel mixed matrix membrane was prepared by functionalizing the substrate material polyaryletherketone(PAEK),followed by carboxyl groups(C-SPAEKS),and then adding amino-functionalized UiO-66-NH_(2)(Am-UiO-66-NH_(2)).Aminofunctionalization of UiO-66 was accomplished by melamine,followed by an amidation reaction to immobilize Am-UiO-66-NH_(2),which was immobilized on the surface of the membrane as well as in the pore channels,which enhanced the hydrophilicity of the membrane surface while increasing the negative potential of the membrane surface.This nanoparticle-loaded ultrafiltration membrane has good permeation performance,with a pure water flux of up to 482.3 L·m^(-2)·h^(-1) for C-SPAEKS/AmUiO-66-NH_(2) and a retention rate of up to 98.7%for bovine serum albumin(BSA)-contaminated solutions.Meanwhile,after several hydrophilic modifications,the flux recovery of BSA contaminants by this series of membranes increased from 56.2%to 80.55%of pure membranes.The results of ultra-filtration flux time tests performed at room temperature showed that the series of ultrafiltration membranes remained relatively stable over a test time of 300 min.Thus,the newly developed mixed matrix membrane showed potential for high efficiency and stability in wastewater treatment containing bovine serum proteins.
基金financially supported by the National Natural Science Foundation of China (22178008, 22125801)Petrochina (2022DJ6004)。
文摘The separation of aromatic/aliphatic hydrocarbon mixtures is crucial in the petrochemical industry.Pervaporation is regarded as a promising approach for the separation of aromatic compounds from alkanes. Developing membrane materials with efficient separation performance is still the main task since the membrane should provide chemical stability, high permeation flux, and selectivity. In this study, the hyperbranched polymer(HBP) was deposited on the outer surface of a polyvinylidene fluoride(PVDF)hollow-fiber ultrafiltration membrane by a facile dip-coating method. The dip-coating rate, HBP concentration, and thermal cross-linking temperature were regulated to optimize the membrane structure.The obtained HBP/PVDF hollow-fiber-composite membrane had a good separation performance for aromatic/aliphatic hydrocarbon mixtures. For the 50%/50%(mass) toluene/n-heptane mixture, the permeation flux of optimized composite membranes could reach 1766 g·m^(-2)·h^(-1), with a separation factor of 4.1 at 60℃. Therefore, the HBP/PVDF hollow-fiber-composite membrane has great application prospects in the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures.
基金support from Sichuan Science and Technology Program(2021YFH0116)National Natural Science Foundation of China(No.52170112)DongFang Boiler Co.,Ltd.(3522015).
文摘Mixed matrix membranes(MMMs)could combine the advantages of both polymeric membranes and porousfillers,making them an effective alternative to conventional polymer membranes.However,interfacial incompatibility issues,such as the presence of interfacial voids,hardening of polymer chains,and blockage of micropores by polymers between common MMMsfillers and the polymer matrix,currently limit the gas sep-aration performance of MMMs.Ternary phase MMMs(consisting of afiller,an additive,and a matrix)made by adding a third compound,usually functionalized additives,can overcome the structural problems of binary phase MMMs and positively impact membrane separation performance.This review introduces the structure and fabrication processes for ternary MMMs,categorizes various nanofillers and the third component,and summarizes and analyzes in detail the CO_(2) separation performance of newly developed ternary MMMs based on both rubbery and glassy polymers.Based on this separation data,the challenges of ternary MMMs are also discussed.Finally,future directions for ternary MMMs are proposed.
基金Natural Science Foundation of China (51603031)Liaoning Provincial Natural Science Foundation of China (2020-MS-087)China Scholarship Council(202306080157)。
文摘This work focuses on the development of high temperature polymer electrolyte membranes(HT-PEMs)as key materials for HT-PEM fuel cells(HT-PEMFCs).Recognizing the challenges associated with the phosphoric acid(PA) doped polybenzimidazole(PBI) membranes,including the use of carcinogenic monomers and complex synthesis procedures,this study aims to develop more cost-effective,readily synthesized,and high-performance alternatives.A series of superacid-catalyzed polyhydroxyalkylation reactions have been carefully designed between p-terphenyl and aldehydes bearing imidazole moieties,resulting in a new class of HT-PEMs.It is found that the chemical structure of aldehyde-substituted N-heterocycles significantly impacts the polymerization reaction.Specifically,the use of 1-methyl-2-imidazole-formaldehyde and 1 H-imidazole-4-formaldehyde monomers leads to the formation of high-viscosity,rigid,and ether-free polymers,denoted as PTIm-a and PTIm-b.Membranes fabricated from these polymers,due to their pendent imidazole groups,exhibit an exceptional capacity for PA absorption.Notably,PTIm-a,carrying methylimidazole moieties,demonstrates a superior chemical stability by maintaining morphology and structural stability during 350 h of Fenton testing.After being immersed in 75 wt% PA at 40℃,the PTIm-a membrane reaches a PA content of 152%,maintains a good tensile strength of 13.6 MPa,and exhibits a moderate conductivity of 50.2 mS cm^(-1) at 180℃.Under H_(2)/O_(2) operational conditions,a single cell based on the PTIm-a membrane attains a peak power density of 732 mW cm^(-2) at 180℃ without backpressure.Furthermore,the membrane demonstrates stable cycle stability over 173 h within 18 days at a current density of 200 mA cm^(-2),indicating its potential for practical application in HT-PEMFCs.This work highlights innovative strategies for the synthesis of advanced HT-PEMs,offering significant improvements in membrane properties and fuel cell performance,thus expanding the horizons of HT-PEMFC technology.
基金the China Scholarship Council(2021)the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FPEJ-2024-249-03”.
文摘A lightweight flexible thermally stable composite is fabricated by com-bining silica nanofiber membranes(SNM)with MXene@c-MWCNT hybrid film.The flexible SNM with outstanding thermal insulation are prepared from tetraethyl orthosilicate hydrolysis and condensation by electrospinning and high-temperature calcination;the MXene@c-MWCNT_(x:y)films are prepared by vacuum filtration tech-nology.In particular,the SNM and MXene@c-MWCNT_(6:4)as one unit layer(SMC_(1))are bonded together with 5 wt%polyvinyl alcohol(PVA)solution,which exhibits low thermal conductivity(0.066 W m^(-1)K^(-1))and good electromagnetic interference(EMI)shielding performance(average EMI SE_(T),37.8 dB).With the increase in func-tional unit layer,the overall thermal insulation performance of the whole composite film(SMC_(x))remains stable,and EMI shielding performance is greatly improved,especially for SMC_(3)with three unit layers,the average EMI SET is as high as 55.4 dB.In addition,the organic combination of rigid SNM and tough MXene@c-MWCNT_(6:4)makes SMC_(x)exhibit good mechanical tensile strength.Importantly,SMC_(x)exhibit stable EMI shielding and excellent thermal insulation even in extreme heat and cold environment.Therefore,this work provides a novel design idea and important reference value for EMI shielding and thermal insulation components used in extreme environmental protection equipment in the future.
文摘Based on chemical thermodynamic theory, racemic ofloxacin is separated in chiral sys-tems by hollow fiber liquid-supported membrane technology combining with countercurrently frac-tional extraction. The two chiral solutions containing L-dibenzoyltartaric acid and D-dibenzoylta- rtaric acid in 1-octanol, flow through the lumen side and the shell side of fibers, respectively. The solution which flows through the lumen side of fibers also contains racemic ofloxacin. The wall of hollow fibers is filled with an aqueous of 0.1 mol/L Na2HPO4/H3PO4 buffer solution of pH = 6.86 containing 2 mmol/L of cetyltrimethyl ammonium bromide for 48 h. The fairly polar ofloxacin can cross the membrane back and forth, but dibenzoyltartaric acids cannot cross it. Fractional chiral extraction theory, mass transfer performance of hollow fiber membrane and enantioselectivity are investigated. Mathematical model of R/S = 0.96e0.03NTU for racemic ofloxacin separation by hollow fiber extraction, is established. The optical purity for ofloxacin enantiomers is up to 90% when 11 hollow fiber membrane modules of 22 cm in length in series are used.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1605000)National Natural Science Foundation of China(Grant No.31871806)the Beijing Livestock Industry Innovation Team(BAIC05-2023)。
文摘Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects and possible underlying mechanisms of MFGM on cow’s milk allergy(CMA)in aβ-lactoglobulin(BLG)-induced allergic mice model.MFGM was supplemented to allergic mice induced by BLG at a dose of 400 mg/kg body weight.Results demonstrated that MFGM alleviated food allergy symptoms,decreased serum levels of lipopolysaccharide,pro-inflammatory cytokines,immunoglobulin(Ig)E,Ig G1,and Th2 cytokines including interleukin(IL)-4,while increased serum levels of Th1 cytokines including interferon-γand regulatory T cells(Tregs)cytokines including IL-10 and transforming growth factor-β.MFGM modulated gut microbiota and enhanced intestinal barrier of BLG-allergic mice,as evidenced by decreased relative abundance of Desulfobacterota,Rikenellaceae,Lachnospiraceae,and Desulfovibrionaceae,while increased relative abundance of Bacteroidetes,Lactobacillaceae and Muribaculaceae,and enhanced expressions of tight junction proteins including Occludin,Claudin-1 and zonula occludens-1.Furthermore,MFGM increased fecal short-chain fatty acids(SCFAs)levels,which elevated G protein-coupled receptor(GPR)43 and GPR109A expressions.The increased expressions of GPR43 and GPR109A induced CD103+dendritic cells accumulation and promoted Tregs differentiation in mesenteric lymph node to a certain extent.In summary,MFGM alleviated CMA in a BLG-induced allergic mice model through enhancing intestinal barrier and promoting Tregs differentiation,which may be correlated with SCFAs-mediated activation of GPRs.These findings suggest that MFGM may be useful as a promising functional ingredient against CMA.
基金sponsored by the National Key R&D Program of China(2022YFB4602101)the Fundamental Research Funds for the Central Universities(2022ZFJH004 and 2024SMECP05)+2 种基金the National Natural Science Foundation of China(22278127 and 22378112)the Shanghai Pilot Program for Basic Research(22T01400100-18)the Postdoctoral Fellowship Program of CPSF(GZC20230801)。
文摘Bipolar membranes(BPMs)exhibit the unique capability to regulate the operating environment of electrochemical system through the water dissociation-combination processes.However,the industrial utilization of BPMs is limited by instability and serious energy consumption.The current-induced membrane discharge(CIMD)at high-current conditions has a negative influence on the performance of anion-exchange membranes,but the underlying ion transport mechanisms in the BPMs remain unclear.Here,the CIMD-coupled Poisson-Nernst-Planck(PNP)equations are used to explore the ion transport mechanisms in the BPMs for both reverse bias and forward bias at neutral and acid-base conditions.It is demonstrated that the CIMD effect in the reverse-bias mode can be suppressed by enhancing the diffusive transport of salt counter-ions(Na^(+)and Cl^(−))into the BPMs,and that in the forward-bias mode with acid-base electrolytes can be suppressed by matching the transport rate of water counter-ions(H_(3)O^(+)and OH^(−)).Suppressing the CIMD can promote the water dissociation in the reverse-bias mode,as well as overcome the plateau of limiting current density and reduce the interfacial blockage of salt co-ions(Cl^(−))in the anion-exchange layer in the forward-bias mode with acid-base electrolytes.Our work highlights the importance of regulating ion crossover transport on improving the performance of BPMs.
基金financially supported by The Natural Science Foundation of the Jiangsu Higher Education Institutions of China(22KJB530007,22KJA530001)National Natural Science Foundation of China(22208151)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20220002)the State Key Laboratory of MaterialsOriented Chemical Engineering(SKL-MCE-22B07).
文摘For the application of carbon capture by membrane process,it is crucial to develop a highly permeable CO_(2)-selective membrane.In this work,we reported an ultra-thin polyether-block-amide(Pebax)mixedmatrix membranes(MMMs)incorporated by graphene oxide(GO),in which the interlayer channels were regulated to optimize the CO_(2)/N_(2) separation performance.Various membrane preparation conditions were systematically investigated on the influence of the membrane structure and separation performance,including the lateral size of GO nanosheets,GO loading,thermal reduction temperature,and time.The results demonstrated that the precisely regulated interlayer channel of GO nanosheets can rapidly provide CO_(2)-selective transport channels due to the synergetic effects of size sieving and preferential adsorption.The GO/Pebax ultra-thin MMMs exhibited CO_(2)/N_(2) selectivity of 72 and CO_(2) permeance of 400 GPU(1 GPU=106 cm^(3)(STP)·cm^(2)·s^(-1)·cmHg^(-1)),providing a promising candidate for CO_(2) capture.
基金supported by the National Natural Science Foundation of China(Grant Nos.12274307,32230063,21774092,and 12347102)the Basic and Applied Basic Research Foundation of Guangdong Province,China(Grant No.2023A1515011610).
文摘Membrane tension plays a crucial role in various fundamental cellular processes,with one notable example being the T cell-mediated elimination of tumor cells through perforin-induced membrane perforation by amplifying cellular force.However,the mechanisms governing the regulation of biomolecular activities at the cell interface by membrane tension remain elusive.In this study,we investigated the correlation between membrane tension and poration activity of melittin,a prototypical pore-forming peptide,using dynamic giant unilamellar vesicle leakage assays combined with flickering tension analysis,molecular dynamics simulations,and live cell assays.The results demonstrate that an increase in membrane tension enhances the activity of melittin,particularly near its critical pore-forming concentration.Moreover,peptide actions such as binding,insertion,and aggregation in the membrane further influence the evolution of membrane tension.Live cell experiments reveal that artificially enhancing membrane tension effectively enhances melittin’s ability to induce pore formation and disrupt membranes,resulting in up to a ten-fold increase in A549 cell mortality when exposed to a concentration of 2.0-μg·mL^(-1)melittin.Our findings elucidate the relationship between membrane tension and the mechanism of action as well as pore-forming efficiency of melittin,while providing a practical mechanical approach for regulating functional activity of molecules at the cell-membrane interface.