Along with the increasing life span, aging and related diseases have become a serious medical and social problem that has roused global attention. In this paper, under the guidance of traditional Chinese medicine (TC...Along with the increasing life span, aging and related diseases have become a serious medical and social problem that has roused global attention. In this paper, under the guidance of traditional Chinese medicine (TCM), the author raises a theory of "dysfunction of Sanjiao qi activity" based on the studies and discussions of classical literatures on Sanjiao theory by combining knowledge in modern integrative traditional Chinese and Western medicine for aging from his more than 30 years of experiences of clinical and experimental practices. The author also tries to explain the mechanisms for aging from the whole aspect of Sanjiao qi activity.展开更多
Active power control of the photovoltaic(PV)power generation system is a promising solution to regulate frequency fluctuation in a power system with high penetration of renewable energy.This paper proposes an autonomo...Active power control of the photovoltaic(PV)power generation system is a promising solution to regulate frequency fluctuation in a power system with high penetration of renewable energy.This paper proposes an autonomous active power control of a small-scale PV system for supporting the inertial response of synchronous generators and power-frequency control.In the proposed control approach,an effective grid frequency regulation scheme is realized using slow-and fast-frequency responses.A low-pass filter based frequency measurement is used for slow-frequency response,while direct frequency measurement is used for fast-frequency response.The designed dual droop characteristic-based control is shaped to achieve a smooth transition between slow-and fast-frequency responses.The performance of the proposed control approach is demonstrated for serious disturbance scenarios,i.e.,considerable power-load imbalance and generation trip.In the powerload imbalance test scenario,the proposed control approach works properly within the normal frequency deviation region even when the frequency deviation exceeds that region occasionally.In the generation trip test,the frequency deviation is mitigated quickly,and the employed droop control is smoothly transferred from the slow-to fast-frequency responses.展开更多
基金Supported by the National Natural Science Foundation of China (No.30630074)Specialized Research Fund for the Doctoral Program of Higher Education (No.20060063006)+1 种基金Special Item of Science and Technology Research,Department of Education (No.207006)Special Item of Tianjin City (No.05YFGDSF02300)
文摘Along with the increasing life span, aging and related diseases have become a serious medical and social problem that has roused global attention. In this paper, under the guidance of traditional Chinese medicine (TCM), the author raises a theory of "dysfunction of Sanjiao qi activity" based on the studies and discussions of classical literatures on Sanjiao theory by combining knowledge in modern integrative traditional Chinese and Western medicine for aging from his more than 30 years of experiences of clinical and experimental practices. The author also tries to explain the mechanisms for aging from the whole aspect of Sanjiao qi activity.
文摘Active power control of the photovoltaic(PV)power generation system is a promising solution to regulate frequency fluctuation in a power system with high penetration of renewable energy.This paper proposes an autonomous active power control of a small-scale PV system for supporting the inertial response of synchronous generators and power-frequency control.In the proposed control approach,an effective grid frequency regulation scheme is realized using slow-and fast-frequency responses.A low-pass filter based frequency measurement is used for slow-frequency response,while direct frequency measurement is used for fast-frequency response.The designed dual droop characteristic-based control is shaped to achieve a smooth transition between slow-and fast-frequency responses.The performance of the proposed control approach is demonstrated for serious disturbance scenarios,i.e.,considerable power-load imbalance and generation trip.In the powerload imbalance test scenario,the proposed control approach works properly within the normal frequency deviation region even when the frequency deviation exceeds that region occasionally.In the generation trip test,the frequency deviation is mitigated quickly,and the employed droop control is smoothly transferred from the slow-to fast-frequency responses.