期刊文献+
共找到26,842篇文章
< 1 2 250 >
每页显示 20 50 100
Performance Analysis of Support Vector Machine (SVM) on Challenging Datasets for Forest Fire Detection
1
作者 Ankan Kar Nirjhar Nath +1 位作者 Utpalraj Kemprai   Aman 《International Journal of Communications, Network and System Sciences》 2024年第2期11-29,共19页
This article delves into the analysis of performance and utilization of Support Vector Machines (SVMs) for the critical task of forest fire detection using image datasets. With the increasing threat of forest fires to... This article delves into the analysis of performance and utilization of Support Vector Machines (SVMs) for the critical task of forest fire detection using image datasets. With the increasing threat of forest fires to ecosystems and human settlements, the need for rapid and accurate detection systems is of utmost importance. SVMs, renowned for their strong classification capabilities, exhibit proficiency in recognizing patterns associated with fire within images. By training on labeled data, SVMs acquire the ability to identify distinctive attributes associated with fire, such as flames, smoke, or alterations in the visual characteristics of the forest area. The document thoroughly examines the use of SVMs, covering crucial elements like data preprocessing, feature extraction, and model training. It rigorously evaluates parameters such as accuracy, efficiency, and practical applicability. The knowledge gained from this study aids in the development of efficient forest fire detection systems, enabling prompt responses and improving disaster management. Moreover, the correlation between SVM accuracy and the difficulties presented by high-dimensional datasets is carefully investigated, demonstrated through a revealing case study. The relationship between accuracy scores and the different resolutions used for resizing the training datasets has also been discussed in this article. These comprehensive studies result in a definitive overview of the difficulties faced and the potential sectors requiring further improvement and focus. 展开更多
关键词 support vector machine Challenging Datasets Forest Fire Detection CLASSIFICATION
下载PDF
Support Vector Machine(SVM)and Object Based Classification in Earth Linear Features Extraction:A Comparison
2
作者 Siti Aekbal Salleh Nafisah Khalid +4 位作者 Natasha Danny Nurul Ain Mohd.Zaki Mustafa Ustuner Zulkiflee Abd Latif Vladimir Foronda 《Revue Internationale de Géomatique》 2024年第1期183-199,共17页
Due to the spectral and spatial properties of pervious and impervious surfaces,image classification and information extraction in detailed,small-scale mapping of urban surface materials is quite difficult and complex.... Due to the spectral and spatial properties of pervious and impervious surfaces,image classification and information extraction in detailed,small-scale mapping of urban surface materials is quite difficult and complex.Emerging methods and innovations in image classification have centred on object-based classification techniques and various segmentation techniques,which are fundamental to this approach.Consequently,the purpose of this study is to determine which classification method is most suitable for extracting linear features in terms of techniques and performance by comparing two classification methods,pixel-based approach and object-based approach,using WorldView-2 satellite imagery to specifically highlight linear features such as roads,building edges,and road dividers.Two applied algorithms,including support vector machines(SVM)and ruled-based,were evaluated using two distinct software.A comparison of the results reveals that the object-based classification has a higher overall resolution than the pixel-based classification.The output of rule-based classificationwas satisfactory,with an overall accuracy of 88.6%(ENVI)and 92.2%(e-Cognition).The SVM classification result contained misclassified impervious surfaces and other urban features,as well as mixed objects.This classification achieved an overall accuracy of 75.1%.Nonetheless,this study provides an excellent overview for understanding the differences in their performances on the same data,as well as a comparison of the software employed. 展开更多
关键词 support vector machine(svm) remote sensing image classification
下载PDF
Comparison of debris flow susceptibility assessment methods:support vector machine,particle swarm optimization,and feature selection techniques 被引量:1
3
作者 ZHAO Haijun WEI Aihua +3 位作者 MA Fengshan DAI Fenggang JIANG Yongbing LI Hui 《Journal of Mountain Science》 SCIE CSCD 2024年第2期397-412,共16页
The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques we... The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques were applied to identify the most important input parameters for mapping debris flow susceptibility in the southern mountain area of Chengde City in Hebei Province,China,by using machine learning algorithms.In total,133 historical debris flow records and 16 related factors were selected.The support vector machine(SVM)was first used as the base classifier,and then a hybrid model was introduced by a two-step process.First,the particle swarm optimization(PSO)algorithm was employed to select the SVM model hyperparameters.Second,two feature selection algorithms,namely principal component analysis(PCA)and PSO,were integrated into the PSO-based SVM model,which generated the PCA-PSO-SVM and FS-PSO-SVM models,respectively.Three statistical metrics(accuracy,recall,and specificity)and the area under the receiver operating characteristic curve(AUC)were employed to evaluate and validate the performance of the models.The results indicated that the feature selection-based models exhibited the best performance,followed by the PSO-based SVM and SVM models.Moreover,the performance of the FS-PSO-SVM model was better than that of the PCA-PSO-SVM model,showing the highest AUC,accuracy,recall,and specificity values in both the training and testing processes.It was found that the selection of optimal features is crucial to improving the reliability of debris flow susceptibility assessment results.Moreover,the PSO algorithm was found to be not only an effective tool for hyperparameter optimization,but also a useful feature selection algorithm to improve prediction accuracies of debris flow susceptibility by using machine learning algorithms.The high and very high debris flow susceptibility zone appropriately covers 38.01%of the study area,where debris flow may occur under intensive human activities and heavy rainfall events. 展开更多
关键词 Chengde Feature selection support vector machine Particle swarm optimization Principal component analysis Debris flow susceptibility
下载PDF
POSITIVE DEFINITE KERNEL IN SUPPORT VECTOR MACHINE(SVM) 被引量:3
4
作者 谢志鹏 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第2期114-121,共8页
The relationship among Mercer kernel, reproducing kernel and positive definite kernel in support vector machine (SVM) is proved and their roles in SVM are discussed. The quadratic form of the kernel matrix is used t... The relationship among Mercer kernel, reproducing kernel and positive definite kernel in support vector machine (SVM) is proved and their roles in SVM are discussed. The quadratic form of the kernel matrix is used to confirm the positive definiteness and their construction. Based on the Bochner theorem, some translation invariant kernels are checked in their Fourier domain. Some rotation invariant radial kernels are inspected according to the Schoenberg theorem. Finally, the construction of discrete scaling and wavelet kernels, the kernel selection and the kernel parameter learning are discussed. 展开更多
关键词 support vector machines(svms) mercer kernel reproducing kernel positive definite kernel scaling and wavelet kernel
下载PDF
基于Support Vector Machine和UPLC-QTOF-MS的人参生长年限数字化鉴定分析
5
作者 王献瑞 郭晓晗 +6 位作者 张宇 张佳婷 贺方良 荆文光 李明华 程显隆 魏锋 《中国现代中药》 CAS 2024年第12期2049-2055,共7页
目的:基于超高效液相色谱-四极杆飞行时间质谱法(UPLC-QTOF-MS)分析并经量化处理,结合支持向量机(SVM)进行数据建模,对人参生长年限进行数字化鉴定分析。方法:对3、4、5、15年生的人参样品进行UPLC-QTOF-MS分析,以混合质量控制样品为基... 目的:基于超高效液相色谱-四极杆飞行时间质谱法(UPLC-QTOF-MS)分析并经量化处理,结合支持向量机(SVM)进行数据建模,对人参生长年限进行数字化鉴定分析。方法:对3、4、5、15年生的人参样品进行UPLC-QTOF-MS分析,以混合质量控制样品为基准进行峰位校正、提取并经量化处理,获取反映化学成分信息的精确质量数-保留时间数据对(EMRT)。结合SVM进行数据建模,同时在5、10、20折内部交叉验证的基础上,通过准确率(Acc)、精确率(P)、曲线下面积(AUC)等参数进行模型评价。基于所建数据模型进行人参生长年限的鉴定。结果:经量化处理后80批人参均获得6556个EMRT,结合SVM建立的数据模型具有优秀的辨识效果,Acc、P及AUC均大于0.900且外部鉴定验证正确率为100%。结论:基于UPLC-QTOF-MS分析,并结合SVM算法能够高效准确地实现人参生长年限的数字化鉴定,可为中药材生长年限鉴定探索及中药质量控制提供参考。 展开更多
关键词 人参 生长年限 机器学习 支持向量机 数字化 超高效液相色谱-四极杆飞行时间质谱法
下载PDF
NEW HYBRID AI-SVM ALGORITHM: COMBINATION OF SUPPORT VECTOR MACHINES AND ARTIFICIAL IMMUNE NETWORKS
6
作者 张焕萍 王惠南 宋晓峰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第4期272-277,共6页
Support vector machines (SVMs) are combined with the artificial immune network (aiNet), thus forming a new hybrid ai-SVM algorithm. The algorithm is used to reduce the number of samples and the training time of SV... Support vector machines (SVMs) are combined with the artificial immune network (aiNet), thus forming a new hybrid ai-SVM algorithm. The algorithm is used to reduce the number of samples and the training time of SVM on large datasets, aiNet is an artificial immune system (AIS) inspired method to perform the automatic data compression, extract the relevant information and retain the topology of the original sample distribution. The output of aiNet is a set of antibodies for representing the input dataset in a simplified way. Then the SVM model is built in the compressed antibody network instead of the original input data. Experimental results show that the ai-SVM algorithm is effective to reduce the computing time and simplify the SVM model, and the accuracy is not decreased. 展开更多
关键词 support vector machine artificial immune network sample reduction
下载PDF
Active Fault Tolerant Nonsingular Terminal Sliding Mode Control for Electromechanical System Based on Support Vector Machine
7
作者 Jian Hu Zhengyin Yang Jianyong Yao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期189-203,共15页
Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant no... Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant nonsingular terminal sliding mode control method based on support vector machine(SVM)is proposed.A SVM is designed to estimate the fault by off-line learning from small sample data with solving convex quadratic programming method and is introduced into a high-gain observer,so as to improve the state estimation and fault detection accuracy when the fault occurs.The state estimation value of the observer is used for state reconfiguration.A novel nonsingular terminal sliding mode surface is designed,and Lyapunov theorem is used to derive a parameter adaptation law and a control law.It is guaranteed that the proposed controller can achieve asymptotical stability which is superior to many advanced fault-tolerant controllers.In addition,the parameter estimation also can help to diagnose the system faults because the faults can be reflected by the parameters variation.Extensive comparative simulation and experimental results illustrate the effectiveness and advancement of the proposed controller compared with several other main-stream controllers. 展开更多
关键词 Aeronautics electromechanical actuator Fault tolerant control support vector machine State observer Parametric uncertainty
下载PDF
Improved Twin Support Vector Machine Algorithm and Applications in Classification Problems
8
作者 Sun Yi Wang Zhouyang 《China Communications》 SCIE CSCD 2024年第5期261-279,共19页
The distribution of data has a significant impact on the results of classification.When the distribution of one class is insignificant compared to the distribution of another class,data imbalance occurs.This will resu... The distribution of data has a significant impact on the results of classification.When the distribution of one class is insignificant compared to the distribution of another class,data imbalance occurs.This will result in rising outlier values and noise.Therefore,the speed and performance of classification could be greatly affected.Given the above problems,this paper starts with the motivation and mathematical representing of classification,puts forward a new classification method based on the relationship between different classification formulations.Combined with the vector characteristics of the actual problem and the choice of matrix characteristics,we firstly analyze the orderly regression to introduce slack variables to solve the constraint problem of the lone point.Then we introduce the fuzzy factors to solve the problem of the gap between the isolated points on the basis of the support vector machine.We introduce the cost control to solve the problem of sample skew.Finally,based on the bi-boundary support vector machine,a twostep weight setting twin classifier is constructed.This can help to identify multitasks with feature-selected patterns without the need for additional optimizers,which solves the problem of large-scale classification that can’t deal effectively with the very low category distribution gap. 展开更多
关键词 FUZZY ordered regression(OR) relaxing variables twin support vector machine
下载PDF
Differentially Private Support Vector Machines with Knowledge Aggregation
9
作者 Teng Wang Yao Zhang +2 位作者 Jiangguo Liang Shuai Wang Shuanggen Liu 《Computers, Materials & Continua》 SCIE EI 2024年第3期3891-3907,共17页
With the widespread data collection and processing,privacy-preserving machine learning has become increasingly important in addressing privacy risks related to individuals.Support vector machine(SVM)is one of the most... With the widespread data collection and processing,privacy-preserving machine learning has become increasingly important in addressing privacy risks related to individuals.Support vector machine(SVM)is one of the most elementary learning models of machine learning.Privacy issues surrounding SVM classifier training have attracted increasing attention.In this paper,we investigate Differential Privacy-compliant Federated Machine Learning with Dimensionality Reduction,called FedDPDR-DPML,which greatly improves data utility while providing strong privacy guarantees.Considering in distributed learning scenarios,multiple participants usually hold unbalanced or small amounts of data.Therefore,FedDPDR-DPML enables multiple participants to collaboratively learn a global model based on weighted model averaging and knowledge aggregation and then the server distributes the global model to each participant to improve local data utility.Aiming at high-dimensional data,we adopt differential privacy in both the principal component analysis(PCA)-based dimensionality reduction phase and SVM classifiers training phase,which improves model accuracy while achieving strict differential privacy protection.Besides,we train Differential privacy(DP)-compliant SVM classifiers by adding noise to the objective function itself,thus leading to better data utility.Extensive experiments on three high-dimensional datasets demonstrate that FedDPDR-DPML can achieve high accuracy while ensuring strong privacy protection. 展开更多
关键词 Differential privacy support vector machine knowledge aggregation data utility
下载PDF
Enhanced Steganalysis for Color Images Using Curvelet Features and Support Vector Machine
10
作者 Arslan Akram Imran Khan +4 位作者 Javed Rashid Mubbashar Saddique Muhammad Idrees Yazeed Yasin Ghadi Abdulmohsen Algarni 《Computers, Materials & Continua》 SCIE EI 2024年第1期1311-1328,共18页
Algorithms for steganography are methods of hiding data transfers in media files.Several machine learning architectures have been presented recently to improve stego image identification performance by using spatial i... Algorithms for steganography are methods of hiding data transfers in media files.Several machine learning architectures have been presented recently to improve stego image identification performance by using spatial information,and these methods have made it feasible to handle a wide range of problems associated with image analysis.Images with little information or low payload are used by information embedding methods,but the goal of all contemporary research is to employ high-payload images for classification.To address the need for both low-and high-payload images,this work provides a machine-learning approach to steganography image classification that uses Curvelet transformation to efficiently extract characteristics from both type of images.Support Vector Machine(SVM),a commonplace classification technique,has been employed to determine whether the image is a stego or cover.The Wavelet Obtained Weights(WOW),Spatial Universal Wavelet Relative Distortion(S-UNIWARD),Highly Undetectable Steganography(HUGO),and Minimizing the Power of Optimal Detector(MiPOD)steganography techniques are used in a variety of experimental scenarios to evaluate the performance of the proposedmethod.Using WOW at several payloads,the proposed approach proves its classification accuracy of 98.60%.It exhibits its superiority over SOTA methods. 展开更多
关键词 CURVELETS fast fourier transformation support vector machine high pass filters STEGANOGRAPHY
下载PDF
HHO optimized support vector machine classifier for traditional Chinese medicine syndrome differentiation of diabetic retinopathy
11
作者 Li Xiao Cheng-Wu Wang +4 位作者 Ying Deng Yi-Jing Yang Jing Lu Jun-Feng Yan Qing-Hua Peng 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第6期991-1000,共10页
AIM:To develop a classifier for traditional Chinese medicine(TCM)syndrome differentiation of diabetic retinopathy(DR),using optimized machine learning algorithms,which can provide the basis for TCM objective and intel... AIM:To develop a classifier for traditional Chinese medicine(TCM)syndrome differentiation of diabetic retinopathy(DR),using optimized machine learning algorithms,which can provide the basis for TCM objective and intelligent syndrome differentiation.METHODS:Collated data on real-world DR cases were collected.A variety of machine learning methods were used to construct TCM syndrome classification model,and the best performance was selected as the basic model.Genetic Algorithm(GA)was used for feature selection to obtain the optimal feature combination.Harris Hawk Optimization(HHO)was used for parameter optimization,and a classification model based on feature selection and parameter optimization was constructed.The performance of the model was compared with other optimization algorithms.The models were evaluated with accuracy,precision,recall,and F1 score as indicators.RESULTS:Data on 970 cases that met screening requirements were collected.Support Vector Machine(SVM)was the best basic classification model.The accuracy rate of the model was 82.05%,the precision rate was 82.34%,the recall rate was 81.81%,and the F1 value was 81.76%.After GA screening,the optimal feature combination contained 37 feature values,which was consistent with TCM clinical practice.The model based on optimal combination and SVM(GA_SVM)had an accuracy improvement of 1.92%compared to the basic classifier.SVM model based on HHO and GA optimization(HHO_GA_SVM)had the best performance and convergence speed compared with other optimization algorithms.Compared with the basic classification model,the accuracy was improved by 3.51%.CONCLUSION:HHO and GA optimization can improve the model performance of SVM in TCM syndrome differentiation of DR.It provides a new method and research idea for TCM intelligent assisted syndrome differentiation. 展开更多
关键词 traditional Chinese medicine diabetic retinopathy Harris Hawk Optimization support vector machine syndrome differentiation
下载PDF
Predicting Turbidite Channel in Deep-Water Canyon Based on Grey Relational Analysis-Support Vector Machine Model:A Case Study of the Lingshui Depression in Qiongdongnan Basin,South China Sea
12
作者 Haichen Li Jianghai Li +1 位作者 Li Li Zhandong Li 《Energy Engineering》 EI 2024年第9期2435-2447,共13页
The turbidite channel of South China Sea has been highly concerned.Influenced by the complex fault and the rapid phase change of lithofacies,predicting the channel through conventional seismic attributes is not accura... The turbidite channel of South China Sea has been highly concerned.Influenced by the complex fault and the rapid phase change of lithofacies,predicting the channel through conventional seismic attributes is not accurate enough.In response to this disadvantage,this study used a method combining grey relational analysis(GRA)and support vectormachine(SVM)and established a set of prediction technical procedures suitable for reservoirs with complex geological conditions.In the case study of the Huangliu Formation in Qiongdongnan Basin,South China Sea,this study first dimensionalized the conventional seismic attributes of Gas Layer Group I and then used the GRA method to obtain the main relational factors.A higher relational degree indicates a higher probability of responding to the attributes of the turbidite channel.This study then accumulated the optimized attributes with the highest relational factors to obtain a first-order accumulated sequence,which was used as the input training sample of the SVM model,thus successfully constructing the SVM turbidite channel model.Drilling results prove that the GRA-SVMmethod has a high drilling coincidence rate.Utilizing the core and logging data and taking full use of the advantages of seismic inversion in predicting the sand boundary of water channels,this study divides the sedimentary microfacies of the Huangliu Formation in the Lingshui 17-2 Gas Field.This comprehensive study has shown that the GRA-SVM method has high accuracy for predicting turbidite channels and can be used as a superior turbidite channel prediction method under complex geological conditions. 展开更多
关键词 support vector machine CHANNEL Huangliu Formation Qiongdongnan Basin
下载PDF
Resting-state functional magnetic resonance imaging and support vector machines for the diagnosis of major depressive disorder in adolescents
13
作者 Zhi-Hui Yu Ren-Qiang Yu +6 位作者 Xing-Yu Wang Wen-Yu Ren Xiao-Qin Zhang Wei Wu Xiao Li Lin-Qi Dai Ya-Lan Lv 《World Journal of Psychiatry》 SCIE 2024年第11期1696-1707,共12页
BACKGROUND Research has found that the amygdala plays a significant role in underlying pathology of major depressive disorder(MDD).However,few studies have explored machine learning-assisted diagnostic biomarkers base... BACKGROUND Research has found that the amygdala plays a significant role in underlying pathology of major depressive disorder(MDD).However,few studies have explored machine learning-assisted diagnostic biomarkers based on amygdala functional connectivity(FC).AIM To investigate the analysis of neuroimaging biomarkers as a streamlined approach for the diagnosis of MDD in adolescents.METHODS Forty-four adolescents diagnosed with MDD and 43 healthy controls were enrolled in the study.Using resting-state functional magnetic resonance imaging,the FC was compared between the adolescents with MDD and the healthy controls,with the bilateral amygdala serving as the seed point,followed by statistical analysis of the results.The support vector machine(SVM)method was then applied to classify functional connections in various brain regions and to evaluate the neurophysiological characteristics associated with MDD.RESULTS Compared to the controls and using the bilateral amygdala as the region of interest,patients with MDD showed significantly lower FC values in the left inferior temporal gyrus,bilateral calcarine,right lingual gyrus,and left superior occipital gyrus.However,there was an increase in the FC value in Vermis-10.The SVM analysis revealed that the reduction in the FC value in the right lingual gyrus could effectively differentiate patients with MDD from healthy controls,achieving a diagnostic accuracy of 83.91%,sensitivity of 79.55%,specificity of 88.37%,and an area under the curve of 67.65%.CONCLUSION The results showed that an abnormal FC value in the right lingual gyrus was effective as a neuroimaging biomarker to distinguish patients with MDD from healthy controls. 展开更多
关键词 Major depressive disorder ADOLESCENT support vector machine machine learning Resting-state functional magnetic resonance imaging NEUROIMAGING BIOMARKER
下载PDF
Site classification methodology using support vector machine: A study
14
作者 Jing Cai Nan Xi 《Earthquake Research Advances》 CSCD 2024年第4期43-54,共12页
The site effect is a crucial factor when analyzing seismic risk and establishing ground motion attenuation relationships. A number of countries have introduced building site classification into earthquake-resistant de... The site effect is a crucial factor when analyzing seismic risk and establishing ground motion attenuation relationships. A number of countries have introduced building site classification into earthquake-resistant design codes to account for local site effects on ground motion. However, most site classification indicators rely on drilling data, which is often expensive and requires considerable manpower. As a result, the less detailed drilling data may lead to an undetermined site category of numerous stations. In this study, a Support Vector Machine(SVM) algorithm-based site classification model was trained to address this issue using strong ground motion data and site data from KiK-net and K-net. The classification model used the average HVSR curve of the labeled site and the combined inputs, including frequency, peak, “prominence”, and “sharpness” extracted from the curve. The SVM classification model has an accuracy of 76.12% on the test set, with recall rates of 82.69%, 75%, and 63.64%for sites Ⅰ, Ⅱ, and Ⅲ, respectively. The precision rates are 75.44%, 73.77%, and 87.50%, respectively, with F1scores of 78.90%, 74.38%, and 73.68%. For sites without significant peaks in the HVSR curve, the HVSR curve value was used as the characteristic parameter(input), and the SVM-based site classification model was also trained. The accuracy of class Ⅰ and Ⅱ is 75.86%. The results of this study show higher recall and accuracy rates than those obtained using the spectral ratio curve matching method and GRNN method, indicating a better classification performance. Finally, the generalization ability of the model was verified using some basic stations in Xinjiang deployed by the “National Seismic Intensity Rapid Reporting and Early Warning Project”. The SVMbased site classification model that employs strong motion data can provide more reliable classification results for sites without detailed borehole information, and the site classification results can serve as a reference for probing ground motion attenuation relationships, ground motion simulation, and seismic fortification considering the site effect. 展开更多
关键词 Site classification HVSR machine learning support vector machine
下载PDF
Support vector machine with discriminative low-rank embedding
15
作者 Guangfei Liang Zhihui Lai Heng Kong 《CAAI Transactions on Intelligence Technology》 2024年第5期1249-1262,共14页
Support vector machine(SVM)is a binary classifier widely used in machine learning.However,neglecting the latent data structure in previous SVM can limit the performance of SVM and its extensions.To address this issue,... Support vector machine(SVM)is a binary classifier widely used in machine learning.However,neglecting the latent data structure in previous SVM can limit the performance of SVM and its extensions.To address this issue,the authors propose a novel SVM with discriminative low-rank embedding(LRSVM)that finds a discriminative latent low-rank subspace more suitable for SVM classification.The extension models of LRSVM are introduced by imposing different orthogonality constraints to prevent computational inaccuracies.A detailed derivation of the authors’iterative algorithms are given that is essentially for solving the SVM on the low-rank subspace.Additionally,some theorems and properties of the proposed models are presented by the authors.It is worth mentioning that the subproblems of the proposed algorithms are equivalent to the standard or the weighted linear discriminant analysis(LDA)problems.This indicates that the projection subspaces obtained by the authors’algorithms are more suitable for SVM classification compared to those from the LDA method.The convergence analysis for the authors proposed algorithms are also provided.Furthermore,the authors conduct experiments on various machine learning data sets to evaluate the algorithms.The experiment results show that the authors’algorithms perform significantly better than other algorithms,which indicates their superior abilities on classification tasks. 展开更多
关键词 iterative methods machine leaning support vector machunes
下载PDF
Support Vector Machines(SVM)-Markov Chain Prediction Model of Mining Water Inflow 被引量:2
16
作者 Kai HUANG 《Agricultural Science & Technology》 CAS 2017年第8期1551-1554,1558,共5页
This study was conducted to establish a Support Vector Machines(SVM)-Markov Chain prediction model for prediction of mining water inflow. According to the raw data sequence, the Support Vector Machines(SVM) model was ... This study was conducted to establish a Support Vector Machines(SVM)-Markov Chain prediction model for prediction of mining water inflow. According to the raw data sequence, the Support Vector Machines(SVM) model was built, and then revised by means of a Markov state change probability matrix. Through dividing the state and analyzing absolute errors and relative errors and other indexes of the measured value and the fitted value of SVM, the prediction results were improved. Finally,the model was used to calculate relative errors. Through predicting and analyzing mining water inflow, the prediction results of the model were satisfactory. The results of this study enlarge the application scope of the Support Vector Machines(SVM) prediction model and provide a new method for scientific forecasting water inflow in coal mining. 展开更多
关键词 Mining water inflow support vector machines (svm Markov Chain
下载PDF
Using Audiometric Data to Weigh and Prioritize Factors that Affect Workers’ Hearing Loss through Support Vector Machine (SVM) Algorithm 被引量:3
17
作者 Hossein ElahiShirvan MohammadReza Ghotbi-Ravandi +1 位作者 Sajad Zare Mostafa Ghazizadeh Ahsaee 《Sound & Vibration》 EI 2020年第2期99-112,共14页
Workers’exposure to excessive noise is a big universal work-related challenges.One of the major consequences of exposure to noise is permanent or transient hearing loss.The current study sought to utilize audiometric... Workers’exposure to excessive noise is a big universal work-related challenges.One of the major consequences of exposure to noise is permanent or transient hearing loss.The current study sought to utilize audiometric data to weigh and prioritize the factors affecting workers’hearing loss based using the Support Vector Machine(SVM)algorithm.This cross sectional-descriptive study was conducted in 2017 in a mining industry in southeast Iran.The participating workers(n=150)were divided into three groups of 50 based on the sound pressure level to which they were exposed(two experimental groups and one control group).Audiometric tests were carried out for all members of each group.The study generally entailed the following steps:(1)selecting predicting variables to weigh and prioritize factors affecting hearing loss;(2)conducting audiometric tests and assessing permanent hearing loss in each ear and then evaluating total hearing loss;(3)categorizing different types of hearing loss;(4)weighing and prioritizing factors that affect hearing loss based on the SVM algorithm;and(5)assessing the error rate and accuracy of the models.The collected data were fed into SPSS 18,followed by conducting linear regression and paired samples t-test.It was revealed that,in the first model(SPL<70 dBA),the frequency of 8 KHz had the greatest impact(with a weight of 33%),while noise had the smallest influence(with a weight of 5%).The accuracy of this model was 100%.In the second model(70<SPL<80 dBA),the frequency of 4 KHz had the most profound effect(with a weight of 21%),whereas the frequency of 250 Hz had the lowest impact(with a weight of 6%).The accuracy of this model was 100%too.In the third model(SPL>85 dBA),the frequency of 4 KHz had the highest impact(with a weight of 22%),while the frequency of 250 Hz had the smallest influence(with a weight of 3%).The accuracy of this model was 100%too.In the fourth model,the frequency of 4 KHz had the greatest effect(with a weight of 24%),while the frequency of 500 Hz had the smallest effect(with a weight of 4%).The accuracy of this model was found to be 94%.According to the modeling conducted using the SVM algorithm,the frequency of 4 KHz has the most profound effect on predicting changes in hearing loss.Given the high accuracy of the obtained model,this algorithm is an appropriate and powerful tool to predict and model hearing loss. 展开更多
关键词 Noise modeling hearing loss data mining support vector machine algorithm
下载PDF
Application of Least Square Support Vector Machine (LSSVM) for Determination of Evaporation Losses in Reservoirs 被引量:5
18
作者 Pijush Samui 《Engineering(科研)》 2011年第4期431-434,共4页
This article adopts Least Square Support Vector Machine (LSSVM) for prediction of Evaporation Losses (EL) in reservoirs. LSSVM is firmly based on the theory of statistical learning, uses regression technique. The inpu... This article adopts Least Square Support Vector Machine (LSSVM) for prediction of Evaporation Losses (EL) in reservoirs. LSSVM is firmly based on the theory of statistical learning, uses regression technique. The input of LSSVM model is Mean air temperature (T) (?C), Average wind speed (WS)(m/sec), Sunshine hours (SH)(hrs/day), and Mean relative humidity(RH)(%). LSSVM has been used to compute error barn of predicted data. An equation has been developed for the determination of EL. Sensitivity analysis has been also performed to investigate the importance of each of the input parameters. A comparative study has been presented between LSSVM and artificial neural network (ANN) models. This study shows that LSSVM is a powerful tool for determination EL in reservoirs. 展开更多
关键词 EVAPORATION LOSSES Least SQUARE support vector machine Prediction Artificial Neural Network
下载PDF
An Efficient and Robust Fall Detection System Using Wireless Gait Analysis Sensor with Artificial Neural Network (ANN) and Support Vector Machine (SVM) Algorithms 被引量:2
19
作者 Bhargava Teja Nukala Naohiro Shibuya +5 位作者 Amanda Rodriguez Jerry Tsay Jerry Lopez Tam Nguyen Steven Zupancic Donald Yu-Chun Lie 《Open Journal of Applied Biosensor》 2014年第4期29-39,共11页
In this work, a total of 322 tests were taken on young volunteers by performing 10 different falls, 6 different Activities of Daily Living (ADL) and 7 Dynamic Gait Index (DGI) tests using a custom-designed Wireless Ga... In this work, a total of 322 tests were taken on young volunteers by performing 10 different falls, 6 different Activities of Daily Living (ADL) and 7 Dynamic Gait Index (DGI) tests using a custom-designed Wireless Gait Analysis Sensor (WGAS). In order to perform automatic fall detection, we used Back Propagation Artificial Neural Network (BP-ANN) and Support Vector Machine (SVM) based on the 6 features extracted from the raw data. The WGAS, which includes a tri-axial accelerometer, 2 gyroscopes, and a MSP430 microcontroller, is worn by the subjects at either T4 (at back) or as a belt-clip in front of the waist during the various tests. The raw data is wirelessly transmitted from the WGAS to a near-by PC for real-time fall classification. The BP ANN is optimized by varying the training, testing and validation data sets and training the network with different learning schemes. SVM is optimized by using three different kernels and selecting the kernel for best classification rate. The overall accuracy of BP ANN is obtained as 98.20% with LM and RPROP training from the T4 data, while from the data taken at the belt, we achieved 98.70% with LM and SCG learning. The overall accuracy using SVM was 98.80% and 98.71% with RBF kernel from the T4 and belt position data, respectively. 展开更多
关键词 Artificial Neural Network (ANN) Back Propagation FALL Detection FALL Prevention GAIT Analysis SENSOR support vector machine (svm) WIRELESS SENSOR
下载PDF
Support Vector Machines Networks to Hybrid Neuro-Genetic SVMs in Portfolio Selection 被引量:1
20
作者 N. Loukeris I. Eleftheriadis 《Intelligent Information Management》 2015年第3期123-129,共7页
Corporate net value is efficiently described on its stock price, offering investors a chance to include a potentially surplus value to the net worth of the overall investment portfolio. Financial analysis of corporati... Corporate net value is efficiently described on its stock price, offering investors a chance to include a potentially surplus value to the net worth of the overall investment portfolio. Financial analysis of corporations extracted from the accounting statements is constantly demanded to support decisions making of portfolio managers. Econometrics and Artificial Intelligence methods aim to extract hidden information from complex accounting and financial data. Support Vector Machines hybrids optimized in their components by Genetic Algorithms provide effective results in corporate financial analysis. 展开更多
关键词 support vector machines GENETIC Algorithms CORPORATE FINANCE FINANCIAL MARKETS
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部