The leukemia-associated autoinhibitor (LAI-615) derived from murine leukemia L7811 has been investigated intensively in our laboratory. In the following experiments, the partial purification of LA I-615 has been carri...The leukemia-associated autoinhibitor (LAI-615) derived from murine leukemia L7811 has been investigated intensively in our laboratory. In the following experiments, the partial purification of LA I-615 has been carried out in addition to the observation of phenotype variations of L7811 leuke-mic cells. The factor was purified over 1306-fold by sequential fractionation with Sephadex G-150 gel filtration, DEAE-cellulose ion exchange chromato-graphy, and Mono Q-fast protein liquid chromato-graphy. The molecular weight of LAI-615 was 68,000 as estimated by gel filtration. LAI-615 was a protein but not glycosylated, and it was suggested LAI-615 be secreted in an autocrine manner. Im-munocytochemical staining showed that the expression of Lyt2 phenotype of L7811 leukemic cells was often coincident with the secretion of LAI-615. Moreover, the physicochemical characteristics of LAI-615 was similar to that of T suppressor factor. Thus it is concluded that LAI-615 may be one of TsF-like factors.展开更多
BACKGROUND: Sepsis has become the greatest threat to in-patients, with a mortality of over 25%.The dysfunction of gut barrier, especially the immunological barrier, plays an important role in the development of sepsi...BACKGROUND: Sepsis has become the greatest threat to in-patients, with a mortality of over 25%.The dysfunction of gut barrier, especially the immunological barrier, plays an important role in the development of sepsis. This dysfunction occurs after surgery, but the magnitude of change does not differentiate patients with sepsis from those without sepsis. Increased intestinal permeability before surgery is of no value in predicating sepsis. The present study aimed to observe the changes of intestinal mucosal immunologic barrier in rat models of sepsis induced by cecal ligation and puncture.METHODS: Sixty Sprague-Dawley rats were randomly divided into a sepsis group (n=45) and a control group (n=15). The rats in the sepsis group were subjected to cecal ligation and puncture (CLP), whereas the rats in the control group underwent a sham operation. The ileac mucosa and segments were harvested 3, 6 and 12 hours after CLP, and blood samples were collected. Pathological changes, protein levels of defensin-5 (RD-5) and trefoil factor-3 (TFF3) mRNA, and lymphocytes apoptosis in the intestinal mucosa were determined. In an additional experiment, the gut-origin bacterial DNA in blood was detected.RESULTS: The intestinal mucosa showed marked injury with loss of ileal villi, desquamation of epithelium, detachment of lamina propria, hemorrhage and ulceration in the sepsis group. The expression of TFF3 mRNA and level of RD-5 protein were decreased and the apoptosis of mucosal lymphocyte increased (P〈0.05) in the sepsis group compared with the control group. Significant differences were observed in RD-5 and TFF3 mRNA 3 hours after CLP and they were progressively increased 6 and 12 hours after CLP in the sepsis group compared with the control group (P〈0.05, RD-5 F=11.76, TFF3 F=16.86 and apoptosis F=122.52). In addition, the gut-origin bacterial DNA detected in plasma was positive in the sepsis group.CONCLUSION: The immunological function of the intestinal mucosa was impaired in septic rats and further deteriorated in the course of sepsis.展开更多
BACKGROUND Cirrhosis results from persistent liver injury that leads to liver fibrosis.Immunological factors play important regulatory roles in the development and progression of cirrhosis.Bibliometrics is one of the ...BACKGROUND Cirrhosis results from persistent liver injury that leads to liver fibrosis.Immunological factors play important regulatory roles in the development and progression of cirrhosis.Bibliometrics is one of the most commonly used methods for systematic evaluation of a field of study.To date,there are no bibliometric studies on the role of immunological factors in cirrhosis.AIM To provide a comprehensive overview of the knowledge structure and research hotspots of immunological factors in cirrhosis.METHODS We retrieved publications related to immunological factors in cirrhosis between 2003 to 2022 from the Web of Science Core Collection database on December 7,2022.The search strategy was TS=((Liver Cirrhosis OR hepatic cirrhosis OR liver fibrosis)AND(Immunologic*Factor*OR Immune Factor*OR Immunomodulator*OR Biological Response Modifier*OR Biomodulator*)).Only original articles and reviews were included.A total of 2873 publications were analyzed using indicators of publication and citation metrics,countries,institutes,authors,journals,references,and keywords by CiteSpace and VOSviewer.RESULTS A total of 5104 authors from 1173 institutions across 51 countries published 2873 papers on cirrhosis and immunological factors in 281 journals.In the past 20 years,the increasing number of related annual publications and citations indicates that research on immunological factors in cirrhosis has become the focus of attention and has entered a period of accelerated development.The United States(781/27.18%),China(538/18.73%),and Germany(300/10.44%)were the leading countries in this field.Most of the top 10 authors were from the United States(4)and Germany(3),with Gershwin ME contributing the most related articles(42).World Journal of Gastroenterology was the most productive journal,whereas Hepatology was the most co-cited journal.Current research hotspots regarding immunological factors in cirrhosis include fibrosis,cirrhosis,inflammation,liver fibrosis,expression,hepatocellular carcinoma,activation,primary biliary cirrhosis,disease,and hepatic stellate cells.Burst keywords(e.g.,epidemiology,gut microbiota,and pathways)represent research frontiers that have attracted the interest of researchers in recent years.CONCLUSION This bibliometric study comprehensively summarizes the research developments and directions of immunological factors in cirrhosis,providing new ideas for promoting scientific research and clinical applications.展开更多
Histamine in food has attracted widespread attention due to the potential toxicity and associated health risk.However,its influences on immunological components,especially the function of key immune cells,are still po...Histamine in food has attracted widespread attention due to the potential toxicity and associated health risk.However,its influences on immunological components,especially the function of key immune cells,are still poorly known.In this work,we explored the effects of exogenous histamine on the function of key immune cells such as intestinal epithelial cells,dendritic cells,and T cells.The results showed that histamine could affect the expression of allergy-related genes in CMT93 cells at a high dose of histamine.Moreover,it’s found that histamine could cause an imbalance in the levels of relevant immune factors secreted by dendritic cells and T cells,especially those related to allergy.At the same time,the proportion of MHC class IIpositive dendritic cells and the proportion of T helper 2(Th2)cells in CD4^(+)T cells increased after histamine stimulation.We concluded that the presence of a certain level of histamine in food may affect the expression of allergy-related cytokines,disrupt the balance of the immune homeostasis,and potentially lead to adverse immune reactions.This work demonstrated the importance of including the estimation of histamine’s immune safety in aquatic products rather than merely considering the potential risk of food poisoning.展开更多
Background and aim: The Krueppel-like transcription factor KLF6 is a novel tumor-suppressor gene. It was inactivated in human prostate cancer and other tumors tissue, as the result of frequent mutation and loss of he...Background and aim: The Krueppel-like transcription factor KLF6 is a novel tumor-suppressor gene. It was inactivated in human prostate cancer and other tumors tissue, as the result of frequent mutation and loss of heterozygosity (LOH). However, there is no data reporting the levels of KLF6 both mRNA and protein in hepatocellular carcinomas (HCCs). We therefore detected mutations and expression of KLF6 in HCC tissues and further observed the effect of it on cell growth in HCC cell lines. Methods: We analyzed the exon-2 ofKLF6 gene by direct DNA sequencing, and detected the expression of KLF6 by RT-PCR and Western blot in 23 HCC tissues and corresponding nontumorous tissues. Loss of growth suppressive effect of the HCC-derived KLF6 mutant was characterized by in vitro growth curves plotted, flow cytometry and Western blotting. Results: KLF6 mutations were found in 2 of 23 HCC tissues and one of mutations was missense. Expression ofKLF6 mRNA or protein was down-regulated in 8 (34.7%) or 9 (39.1%) of 23 HCC tissues. Wild-type KLF6 (wtKLF6) inhibited cellular proliferation and prolonged G1 -S transition by inducing the expression of p21WAF 1 following stable transfection into cultured HepG2 cells, but tumor-derived KLF6 mutant (mKLF6) had no effects. Conclusion: Our findings suggest that KLF6 may be involved in pathogenesis of HCC.展开更多
The low intrinsic growth capacity of neurons and an injury-induced inhibitory milieu are major contributo rs to the failure of sensory and motor functional recovery following spinal cord injury.Heat shock transcriptio...The low intrinsic growth capacity of neurons and an injury-induced inhibitory milieu are major contributo rs to the failure of sensory and motor functional recovery following spinal cord injury.Heat shock transcription factor 1(HSF1),a master regulator of the heat shock response,plays neurogenetic and neuroprotective roles in the damaged or diseased central nervous system.However,the underlying mechanism has not been fully elucidated.In the present study,we used a gecko model of spontaneous nerve regeneration to investigate the potential roles of gecko HSF1(gHSF1) in the regulation of neurite outgrowth and inflammatory inhibition of macrophages following spinal cord injury.gHSF1 expression in neurons and microglia at the lesion site increased dramatically immediately after tail amputation.gHSF1 ove rexpression in gecko primary neuro ns significantly promoted axonal growth by suppressing the expression of suppressor of cytokine signaling-3,and fa cilitated neuro nal survival via activation of the mitogen-activated extracellular signal-regulated kinase/extracellular regulated protein kinases and phosphatidylinositol 3-kinase/protein kinase B pathways.Furthermore,gHSF1 efficiently inhibited the macrophagemediated inflammatory response by inactivating 1kappa B-alpha/NF-kappaB signaling.Our findings show that HSF1 plays dual roles in promoting axonal regrowth and inhibiting leukocyte inflammation,and provide new avenues of investigation for promoting spinal co rd injury repair in mammals.展开更多
The effects of granulocyte colony-stimulation-factor (G-CSF) on stem cell mobilization and its impact on the amplification of myeloid-derived suppressor cells (MDSCs) of donor mice were ex- amined. A mouse model o...The effects of granulocyte colony-stimulation-factor (G-CSF) on stem cell mobilization and its impact on the amplification of myeloid-derived suppressor cells (MDSCs) of donor mice were ex- amined. A mouse model of stem cell mobilization was established by consecutive subcutaneous injec- tion of 100 μg/kg G-CSF for 5 days. The blood from the donor mice was routinely examined during mobilization. Stem cells and MDSCs were analyzed by flow cytometry. The immunosuppressive mole- cules derived from MDSCs in serum and spleen, including hydrogen dioxide (H202) and nitric oxide (NO), and the activity of nitric oxide synthase (NOS) were determined during the mobilization. Apop- tosis of T lymphocytes was assessed by using Annexin-V/PI. During stem cell mobilization, the number of lymphocytes and white blood cells in the peripheral blood was increased, and peaked on the 4th day. The number of stem cells in G-CSF-treated mice was significantly greater than that in controls (P〈0.01). The expansions of MSDCs were also observed after G-CSF mobilization, with a more notable rate of growth in the peripheral blood than in the spleen. The activity of NOS and the production of NO were increased in the donor mice, and the serum H202 levels were approximately 4-fold greater than the con- trois. Consequently, apoptosis of T lymphocytes was increased and showed a positive correlation with the elevated percentage of MDSCs. It was concluded that G-CSF could provide sufficient peripheral blood stem cells for transplantation. Exogenous administration of G-CSF caused the accumulation of MDSCs in the peripheral blood and the spleen, which could lead to apoptosis ofT lymphocytes and may offer a new strategy for the prevention and treatment of graft versus host disease.展开更多
Objective: To investigate the correlation of Runt-related transcription factor 2 (RunX2) with proliferation genes, tumor suppressor genes and angiogenesis molecules in colon cancer lesions. Methods: A total of 90 pati...Objective: To investigate the correlation of Runt-related transcription factor 2 (RunX2) with proliferation genes, tumor suppressor genes and angiogenesis molecules in colon cancer lesions. Methods: A total of 90 patients with primary colon cancer were enrolled in colon cancer group, 68 patients with benign colon polyps were enrolled in colon polyps group, the differences in the expression levels of RunX2, proliferation genes, tumor suppressor genes and angiogenesis molecules in the two groups of lesions were compared, and Pearson test was further used to evaluate the correlation of RunX2 expression level with proliferation gene, tumor suppressor gene and angiogenesis molecule expression levels in colon cancer tissues. Results: RunX2 mRNA expression level in the lesions of colon cancer group was higher than that of colon polyps group. Proliferation genes GTPBP4, HOXB7, ZNF331, ADAM17 and HSP60 mRNA expression levels in the lesions of colon cancer group were higher than those of colon polyps group;tumor suppressor genes ATF3, FOXN3, OTUD1 and NDRG2 mRNA expression levels were lower than those of colon polyps group;angiogenesis molecules Musashi 1, NF-κB, RegⅣ and STAT3 mRNA expression levels were higher than those of colon polyps group. RunX2 mRNA expression level in the colon cancer lesions was directly correlated with the expression levels of the above proliferation genes, tumor suppressor genes and angiogenesis molecules. Conclusion: RunX2 expression is abnormally high in colon cancer lesions, the specific expression level is positively correlated with cancer cell proliferation activity and angiogenesis activity, and it is an important molecular target that can lead to the occurrence and development of colon cancer.展开更多
Intermittent fasting can benefit breast cancer patients undergoing chemotherapy or immunotherapy.However,it is still uncertain how to select immunotherapy drugs to combine with intermittent fasting.Herein we observed ...Intermittent fasting can benefit breast cancer patients undergoing chemotherapy or immunotherapy.However,it is still uncertain how to select immunotherapy drugs to combine with intermittent fasting.Herein we observed that two cycles of fasting treatment significantly inhibited breast tumor growth and lung tissue metastasis,as well as prolonged overall survival in mice bearing 4T1 and 4T07 breast cancer.During this process,both the immunosuppressive monocytic-(M-)and granulocytic-(G-)myeloid-derived suppressor cell(MDSC)decreased,accompanied by an increase in interleukin(IL)7R^(+)and granzyme B^(+)T cells in the tumor microenvironment.Interestingly,we observed that Ly6G^(low)G-MDSC sharply decreased after fasting treatment,and the cell surface markers and protein mass spectrometry data showed potential therapeutic targets.Mechanistic investigation revealed that glucose metabolism restriction suppressed the splenic granulocytemonocyte progenitor and the generation of colony-stimulating factors and IL-6,which both contributed to the accumulation of G-MDSC.On the other hand,glucose metabolism restriction can directly induce the apoptosis of Ly6G^(low)G-MDSC,but not Ly6G^(high)subsets.In summary,these results suggest that glucose metabolism restriction induced by fasting treatment attenuates the immune-suppressive milieu and enhances the activation of CD3^(+)T cells,providing potential solutions for enhancing immune-based cancer interventions.展开更多
文摘The leukemia-associated autoinhibitor (LAI-615) derived from murine leukemia L7811 has been investigated intensively in our laboratory. In the following experiments, the partial purification of LA I-615 has been carried out in addition to the observation of phenotype variations of L7811 leuke-mic cells. The factor was purified over 1306-fold by sequential fractionation with Sephadex G-150 gel filtration, DEAE-cellulose ion exchange chromato-graphy, and Mono Q-fast protein liquid chromato-graphy. The molecular weight of LAI-615 was 68,000 as estimated by gel filtration. LAI-615 was a protein but not glycosylated, and it was suggested LAI-615 be secreted in an autocrine manner. Im-munocytochemical staining showed that the expression of Lyt2 phenotype of L7811 leukemic cells was often coincident with the secretion of LAI-615. Moreover, the physicochemical characteristics of LAI-615 was similar to that of T suppressor factor. Thus it is concluded that LAI-615 may be one of TsF-like factors.
基金This study was supported by the National Natural Science Foundation of Guangdong Province (06021323).
文摘BACKGROUND: Sepsis has become the greatest threat to in-patients, with a mortality of over 25%.The dysfunction of gut barrier, especially the immunological barrier, plays an important role in the development of sepsis. This dysfunction occurs after surgery, but the magnitude of change does not differentiate patients with sepsis from those without sepsis. Increased intestinal permeability before surgery is of no value in predicating sepsis. The present study aimed to observe the changes of intestinal mucosal immunologic barrier in rat models of sepsis induced by cecal ligation and puncture.METHODS: Sixty Sprague-Dawley rats were randomly divided into a sepsis group (n=45) and a control group (n=15). The rats in the sepsis group were subjected to cecal ligation and puncture (CLP), whereas the rats in the control group underwent a sham operation. The ileac mucosa and segments were harvested 3, 6 and 12 hours after CLP, and blood samples were collected. Pathological changes, protein levels of defensin-5 (RD-5) and trefoil factor-3 (TFF3) mRNA, and lymphocytes apoptosis in the intestinal mucosa were determined. In an additional experiment, the gut-origin bacterial DNA in blood was detected.RESULTS: The intestinal mucosa showed marked injury with loss of ileal villi, desquamation of epithelium, detachment of lamina propria, hemorrhage and ulceration in the sepsis group. The expression of TFF3 mRNA and level of RD-5 protein were decreased and the apoptosis of mucosal lymphocyte increased (P〈0.05) in the sepsis group compared with the control group. Significant differences were observed in RD-5 and TFF3 mRNA 3 hours after CLP and they were progressively increased 6 and 12 hours after CLP in the sepsis group compared with the control group (P〈0.05, RD-5 F=11.76, TFF3 F=16.86 and apoptosis F=122.52). In addition, the gut-origin bacterial DNA detected in plasma was positive in the sepsis group.CONCLUSION: The immunological function of the intestinal mucosa was impaired in septic rats and further deteriorated in the course of sepsis.
基金the National Multi-Center Clinical Research Project of Peking University First Hospital,No.2022CR57.
文摘BACKGROUND Cirrhosis results from persistent liver injury that leads to liver fibrosis.Immunological factors play important regulatory roles in the development and progression of cirrhosis.Bibliometrics is one of the most commonly used methods for systematic evaluation of a field of study.To date,there are no bibliometric studies on the role of immunological factors in cirrhosis.AIM To provide a comprehensive overview of the knowledge structure and research hotspots of immunological factors in cirrhosis.METHODS We retrieved publications related to immunological factors in cirrhosis between 2003 to 2022 from the Web of Science Core Collection database on December 7,2022.The search strategy was TS=((Liver Cirrhosis OR hepatic cirrhosis OR liver fibrosis)AND(Immunologic*Factor*OR Immune Factor*OR Immunomodulator*OR Biological Response Modifier*OR Biomodulator*)).Only original articles and reviews were included.A total of 2873 publications were analyzed using indicators of publication and citation metrics,countries,institutes,authors,journals,references,and keywords by CiteSpace and VOSviewer.RESULTS A total of 5104 authors from 1173 institutions across 51 countries published 2873 papers on cirrhosis and immunological factors in 281 journals.In the past 20 years,the increasing number of related annual publications and citations indicates that research on immunological factors in cirrhosis has become the focus of attention and has entered a period of accelerated development.The United States(781/27.18%),China(538/18.73%),and Germany(300/10.44%)were the leading countries in this field.Most of the top 10 authors were from the United States(4)and Germany(3),with Gershwin ME contributing the most related articles(42).World Journal of Gastroenterology was the most productive journal,whereas Hepatology was the most co-cited journal.Current research hotspots regarding immunological factors in cirrhosis include fibrosis,cirrhosis,inflammation,liver fibrosis,expression,hepatocellular carcinoma,activation,primary biliary cirrhosis,disease,and hepatic stellate cells.Burst keywords(e.g.,epidemiology,gut microbiota,and pathways)represent research frontiers that have attracted the interest of researchers in recent years.CONCLUSION This bibliometric study comprehensively summarizes the research developments and directions of immunological factors in cirrhosis,providing new ideas for promoting scientific research and clinical applications.
基金financially supported by the Key Project of Zhejiang Provincial Natural Science Foundation of China(LZ22C200003)the National Natural Science Foundation of China(32072290)。
文摘Histamine in food has attracted widespread attention due to the potential toxicity and associated health risk.However,its influences on immunological components,especially the function of key immune cells,are still poorly known.In this work,we explored the effects of exogenous histamine on the function of key immune cells such as intestinal epithelial cells,dendritic cells,and T cells.The results showed that histamine could affect the expression of allergy-related genes in CMT93 cells at a high dose of histamine.Moreover,it’s found that histamine could cause an imbalance in the levels of relevant immune factors secreted by dendritic cells and T cells,especially those related to allergy.At the same time,the proportion of MHC class IIpositive dendritic cells and the proportion of T helper 2(Th2)cells in CD4^(+)T cells increased after histamine stimulation.We concluded that the presence of a certain level of histamine in food may affect the expression of allergy-related cytokines,disrupt the balance of the immune homeostasis,and potentially lead to adverse immune reactions.This work demonstrated the importance of including the estimation of histamine’s immune safety in aquatic products rather than merely considering the potential risk of food poisoning.
文摘Background and aim: The Krueppel-like transcription factor KLF6 is a novel tumor-suppressor gene. It was inactivated in human prostate cancer and other tumors tissue, as the result of frequent mutation and loss of heterozygosity (LOH). However, there is no data reporting the levels of KLF6 both mRNA and protein in hepatocellular carcinomas (HCCs). We therefore detected mutations and expression of KLF6 in HCC tissues and further observed the effect of it on cell growth in HCC cell lines. Methods: We analyzed the exon-2 ofKLF6 gene by direct DNA sequencing, and detected the expression of KLF6 by RT-PCR and Western blot in 23 HCC tissues and corresponding nontumorous tissues. Loss of growth suppressive effect of the HCC-derived KLF6 mutant was characterized by in vitro growth curves plotted, flow cytometry and Western blotting. Results: KLF6 mutations were found in 2 of 23 HCC tissues and one of mutations was missense. Expression ofKLF6 mRNA or protein was down-regulated in 8 (34.7%) or 9 (39.1%) of 23 HCC tissues. Wild-type KLF6 (wtKLF6) inhibited cellular proliferation and prolonged G1 -S transition by inducing the expression of p21WAF 1 following stable transfection into cultured HepG2 cells, but tumor-derived KLF6 mutant (mKLF6) had no effects. Conclusion: Our findings suggest that KLF6 may be involved in pathogenesis of HCC.
基金supported by the National Natural Science Foundation of China,No.31871211 (to YJunW)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘The low intrinsic growth capacity of neurons and an injury-induced inhibitory milieu are major contributo rs to the failure of sensory and motor functional recovery following spinal cord injury.Heat shock transcription factor 1(HSF1),a master regulator of the heat shock response,plays neurogenetic and neuroprotective roles in the damaged or diseased central nervous system.However,the underlying mechanism has not been fully elucidated.In the present study,we used a gecko model of spontaneous nerve regeneration to investigate the potential roles of gecko HSF1(gHSF1) in the regulation of neurite outgrowth and inflammatory inhibition of macrophages following spinal cord injury.gHSF1 expression in neurons and microglia at the lesion site increased dramatically immediately after tail amputation.gHSF1 ove rexpression in gecko primary neuro ns significantly promoted axonal growth by suppressing the expression of suppressor of cytokine signaling-3,and fa cilitated neuro nal survival via activation of the mitogen-activated extracellular signal-regulated kinase/extracellular regulated protein kinases and phosphatidylinositol 3-kinase/protein kinase B pathways.Furthermore,gHSF1 efficiently inhibited the macrophagemediated inflammatory response by inactivating 1kappa B-alpha/NF-kappaB signaling.Our findings show that HSF1 plays dual roles in promoting axonal regrowth and inhibiting leukocyte inflammation,and provide new avenues of investigation for promoting spinal co rd injury repair in mammals.
基金supported by grants from Department of Health of Hubei Province(No.JX5B07)Department of Health of Wuhan(No.WX09B02)
文摘The effects of granulocyte colony-stimulation-factor (G-CSF) on stem cell mobilization and its impact on the amplification of myeloid-derived suppressor cells (MDSCs) of donor mice were ex- amined. A mouse model of stem cell mobilization was established by consecutive subcutaneous injec- tion of 100 μg/kg G-CSF for 5 days. The blood from the donor mice was routinely examined during mobilization. Stem cells and MDSCs were analyzed by flow cytometry. The immunosuppressive mole- cules derived from MDSCs in serum and spleen, including hydrogen dioxide (H202) and nitric oxide (NO), and the activity of nitric oxide synthase (NOS) were determined during the mobilization. Apop- tosis of T lymphocytes was assessed by using Annexin-V/PI. During stem cell mobilization, the number of lymphocytes and white blood cells in the peripheral blood was increased, and peaked on the 4th day. The number of stem cells in G-CSF-treated mice was significantly greater than that in controls (P〈0.01). The expansions of MSDCs were also observed after G-CSF mobilization, with a more notable rate of growth in the peripheral blood than in the spleen. The activity of NOS and the production of NO were increased in the donor mice, and the serum H202 levels were approximately 4-fold greater than the con- trois. Consequently, apoptosis of T lymphocytes was increased and showed a positive correlation with the elevated percentage of MDSCs. It was concluded that G-CSF could provide sufficient peripheral blood stem cells for transplantation. Exogenous administration of G-CSF caused the accumulation of MDSCs in the peripheral blood and the spleen, which could lead to apoptosis ofT lymphocytes and may offer a new strategy for the prevention and treatment of graft versus host disease.
文摘Objective: To investigate the correlation of Runt-related transcription factor 2 (RunX2) with proliferation genes, tumor suppressor genes and angiogenesis molecules in colon cancer lesions. Methods: A total of 90 patients with primary colon cancer were enrolled in colon cancer group, 68 patients with benign colon polyps were enrolled in colon polyps group, the differences in the expression levels of RunX2, proliferation genes, tumor suppressor genes and angiogenesis molecules in the two groups of lesions were compared, and Pearson test was further used to evaluate the correlation of RunX2 expression level with proliferation gene, tumor suppressor gene and angiogenesis molecule expression levels in colon cancer tissues. Results: RunX2 mRNA expression level in the lesions of colon cancer group was higher than that of colon polyps group. Proliferation genes GTPBP4, HOXB7, ZNF331, ADAM17 and HSP60 mRNA expression levels in the lesions of colon cancer group were higher than those of colon polyps group;tumor suppressor genes ATF3, FOXN3, OTUD1 and NDRG2 mRNA expression levels were lower than those of colon polyps group;angiogenesis molecules Musashi 1, NF-κB, RegⅣ and STAT3 mRNA expression levels were higher than those of colon polyps group. RunX2 mRNA expression level in the colon cancer lesions was directly correlated with the expression levels of the above proliferation genes, tumor suppressor genes and angiogenesis molecules. Conclusion: RunX2 expression is abnormally high in colon cancer lesions, the specific expression level is positively correlated with cancer cell proliferation activity and angiogenesis activity, and it is an important molecular target that can lead to the occurrence and development of colon cancer.
基金supported by the Postdoctoral Research Funds of Hebei Medical University(30705010016-3759)Natural Science Foundation of China(32272328)+4 种基金Natural Science Foundation of Hebei Province(B2022321001)National Key Research Project of Hebei Province(20375502D)Postdoctoral Research Project of Hebei Province(B2022003031)Science and Technology Research Program of Hebei Provincial Colleges(QN2023229)Hebei Provincial Key Laboratory of Nutrition and Health(2023YDYY-KF05)。
文摘Intermittent fasting can benefit breast cancer patients undergoing chemotherapy or immunotherapy.However,it is still uncertain how to select immunotherapy drugs to combine with intermittent fasting.Herein we observed that two cycles of fasting treatment significantly inhibited breast tumor growth and lung tissue metastasis,as well as prolonged overall survival in mice bearing 4T1 and 4T07 breast cancer.During this process,both the immunosuppressive monocytic-(M-)and granulocytic-(G-)myeloid-derived suppressor cell(MDSC)decreased,accompanied by an increase in interleukin(IL)7R^(+)and granzyme B^(+)T cells in the tumor microenvironment.Interestingly,we observed that Ly6G^(low)G-MDSC sharply decreased after fasting treatment,and the cell surface markers and protein mass spectrometry data showed potential therapeutic targets.Mechanistic investigation revealed that glucose metabolism restriction suppressed the splenic granulocytemonocyte progenitor and the generation of colony-stimulating factors and IL-6,which both contributed to the accumulation of G-MDSC.On the other hand,glucose metabolism restriction can directly induce the apoptosis of Ly6G^(low)G-MDSC,but not Ly6G^(high)subsets.In summary,these results suggest that glucose metabolism restriction induced by fasting treatment attenuates the immune-suppressive milieu and enhances the activation of CD3^(+)T cells,providing potential solutions for enhancing immune-based cancer interventions.