期刊文献+
共找到3,903篇文章
< 1 2 196 >
每页显示 20 50 100
Lignin-assisted construction of sub-10 nm supramolecular self-assembly for photothermal immunotherapy and potentiating anti-PD-1 therapy against primary and distant breast tumors
1
作者 Xudong Fan Tianxiang Yue +8 位作者 Aidi Liu Xiaowei Xie Weixiang Fang Yinghui Wei Hangsheng Zheng Hongyue Zheng Meiqi Zhou Jigang Piao Fanzhu Li 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2022年第5期713-727,共15页
Photothermal therapy(PTT)has brought hope for cancer treatments,with hyperthermia-induced immunogenic cell death(ICD),which is a critical part of therapeutically induced antitumor immune responses.Limited immune stimu... Photothermal therapy(PTT)has brought hope for cancer treatments,with hyperthermia-induced immunogenic cell death(ICD),which is a critical part of therapeutically induced antitumor immune responses.Limited immune stimulation response in PTT is the primary reason for incomplete tumor ablation,therefore demonstrating urgent requirements for ICD amplifier.Herein,a sub-10 nm supramolecular nanoassembly was formed by coassembly of clinically approved aluminum adjuvant and commonly used indocyanine green(ICG)under the assistance of lignosulfonate(LS,a green and sustainable multifunctional lignin derivative)for localized photothermal-immunotherapy of breast cancer.The overall results revealed that LS-Al-ICG is capable of inducing amplified ICD,efficiently eliciting solid immune responses through dendritic cells(DCs)activation and cytotoxic T-cell responses initiation for tumor killing.Moreover,anti-PD-1 therapy blocked the PD-1 pathway and led to remarkable anti-tumor efficacy against laser-irradiated primary tumors and distant tumors by potentiating systemic tumor specific T cell immunity.The results of this study demonstrate a handy and extensible approach for engineering green natural lignin nanoparticles for cancer immunotherapy,which shows promise for delivering other therapeutics in biomedical applications. 展开更多
关键词 LIGNIN supramolecular self-assembly Photothermal-immunotherapy Anti-PD-1
下载PDF
Synthesis of a New Porphyrin-fluorescein Hybrid and its Supramolecular Self-assembly with Amino-porphyrinatomanganese(Ⅲ) by Hydrogen-bonding 被引量:3
2
作者 JiaZhengLU JinWangHUANG LiFenFAN JieLIU KeZhuanXU XianLiCHEN LiangNianJI 《Chinese Chemical Letters》 SCIE CAS CSCD 2005年第3期303-306,共4页
A new porphyrin-fluorescein hybrid 2 (Fl-PPTPP) has been synthesized and characterized by UV-Vis, IR, H-NMR, ESI-MS and elemental analysis. The supramolecular 1 self-assembly of Fl-PPTPP with amino-porphyrinatomangane... A new porphyrin-fluorescein hybrid 2 (Fl-PPTPP) has been synthesized and characterized by UV-Vis, IR, H-NMR, ESI-MS and elemental analysis. The supramolecular 1 self-assembly of Fl-PPTPP with amino-porphyrinatomanganese [Mn (p-APTPP)Cl] by hydrogen-bonding was studied using fluorescence spectroscopic titration and ESI-MS. 展开更多
关键词 PORPHYRIN FLUORESCEIN amino-porphyrinatomanganese supramolecular SELFASSEMBLY hydrogen-bonding.
下载PDF
Supramolecular Self-assembly and Functionalization of Porphyrin-based Systems
3
作者 许良 李勇军 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2014年第3期367-386,共20页
Porphyrins are abundant in nature. They have been frequently employed as building blocks in the construction of nanoarchitectures and functional supramolecular systems. Recently, a series of novel porphyrin molecules ... Porphyrins are abundant in nature. They have been frequently employed as building blocks in the construction of nanoarchitectures and functional supramolecular systems. Recently, a series of novel porphyrin molecules including small molecules and polymers have been originally designed and synthesized with the aim of producing nanostructures with controllable-growth and materials with high-performance. Literature coverage is through 2004-2012. This review gives a full summary of related studies in our group. 展开更多
关键词 PORPHYRIN supramolecular chemistry self-assemblY functional systems
下载PDF
Chiral liquid crystals based on pillararene and supramolecular self-assembly-induced chirality amplification
4
作者 Bicong Liang Yujie Cheng +6 位作者 Xiong Liu Lan Jia Xuehong Wei Qiang Zheng Pi Wang Danyu Xia Xuzhou Yan 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第10期3373-3381,共9页
Macrocyclic liquid crystals combine the unique property of liquid crystals and excellent supramolecular assembly ability of macrocyclic compounds.It is a significant challenge to make rational use of the advantages of... Macrocyclic liquid crystals combine the unique property of liquid crystals and excellent supramolecular assembly ability of macrocyclic compounds.It is a significant challenge to make rational use of the advantages of macrocyclic compounds to prepare new macrocyclic mesogens.Pillararenes,a type of macrocycles with rigid pillar-shaped frameworks and easy-tofunctionalize property,are excellent building blocks to fabricate liquid crystal materials.However,the site-selective modification property of pillararene has been rarely exploited to tailor liquid crystal behaviors.Previously reported pillararene-based liquid crystal systems are almost prepared by per-functionalized pillararenes.Herein,we report the regulation of chiral liquid crystal behaviors by different derivatization of pillararene.Lyotropic and thermotropic liquid crystals with different chirality were obtained by self-assembly of pillararene with different numbers of cholesterol groups.The bridge between thermotropic liquid crystal and lyotropic liquid crystal based on pillararene is built.In addition,the chirality of the mesogens can be amplified through supramolecular self-assembly driven by noncovalent interactions.Based on the different liquid crystal behaviors,the optical signal of the pillararene-based chiral liquid crystals was used to fabricate an information encryption system.This work provides a simple strategy to regulate liquid crystal behaviors via pillararene-based mesogens and realizes information encryption through the combination of different types of liquid crystals. 展开更多
关键词 chiral liquid crystal pillararene self-assemblY CHOLESTEROL information encryption
原文传递
Morphological Evolution of Self-Assembled Sodium Dodecyl Sulfate/Dodecyltrimethylammonium Bromide@Epoxy-β-Cyclodextrin Supramolecular Aggregates Induced by Temperature
5
作者 Qingran Meng Wenwen Xu +2 位作者 Zuobing Xiao Qinfei Ke Xingran Kou 《Journal of Renewable Materials》 EI CAS 2024年第4期629-641,共13页
Bio-based cyclodextrins(CDs)are a common research object in supramolecular chemistry.The special cavity structure of CDs can form supramolecular self-assemblies such as vesicles and microcrystals through weak interact... Bio-based cyclodextrins(CDs)are a common research object in supramolecular chemistry.The special cavity structure of CDs can form supramolecular self-assemblies such as vesicles and microcrystals through weak interaction with guest molecules.The different forms of supramolecular self-assemblies can be transformed into each other under certain conditions.The regulation of supramolecular self-assembly is not only helpful to understand the self-assembly principle,but also beneficial to its application.In the present study,the self-assembly behavior of epoxy-β-cyclodextrin(EP-β-CD)and mixed anionic and cationic surfactant system(sodium dodecyl sulfate/dodecyltrimethylammonium bromide,SDS/DTAB)in aqueous solution was studied.Morphological and particle size characterization found that the SDS/DTAB@EP-β-CD complex,as the basic building unit,self-assembled into worm-like micelles at lower temperatures and vesicles at higher temperatures.Nuclear magnetic resonance(NMR)and Fourier transform infrared spectroscopy(FT-IR)analysis revealed that the driving force for the formation of vesicles and worm-like micelles was the hydrogen bonds between EP-β-CD molecules,while water molecules played an important role in promoting vesicle formation between SDS/DTAB@EP-β-CD units.Herein,the mechanism of the morphologic transformation of SDS/DTAB@EP-β-CD supramolecular aggregates induced by temperature was elucidated by exploring the self-assembly process,which may provide an excellent basis for the development of delivery carriers. 展开更多
关键词 Epoxy-β-cyclodextrin SDS/DTAB self-assemblY TEMPERATURE morphological evolution
下载PDF
Pillar[6]arene-based supramolecular self-assemblies for twopronged GSH-consumption-augmented chemo/photothermal therapy
6
作者 Yang Bai Xihua Li +3 位作者 Sijie Song Jing Yang Xia Liu Zhaowei Chen 《Nano Research》 SCIE EI CSCD 2023年第7期9921-9929,共9页
The abundant intracellular glutathione(GSH)in cancer cells severely undermines the therapeutic efficacy of different treatments due to their role in protecting cancer cells from the associated oxidative stress.Develop... The abundant intracellular glutathione(GSH)in cancer cells severely undermines the therapeutic efficacy of different treatments due to their role in protecting cancer cells from the associated oxidative stress.Developing a highly integrated system to consume GSH would help to improve the therapeutic outcomes.In this study,supramolecular prodrug self-assemblies(SPSAs)with IR825 loaded inside were developed to consume GSH via two-pronged pathways while augmenting the therapeutic potency of chemo/photothermal treatment.SPSAs were prepared using water-soluble pillar[6]arene(WP[6])as host units and H_(2)O_(2)-responsive nitrogen mustard prodrug,chlorambucil-(phenylboronic acid pinacol ester)conjugates(Cb-BE),as the guests.When SPSAs were internalized by cancer cells,the generation of quinone methide(QM)from Cb-BE and singlet oxygen(^(1)O_(2))from irradiation-activated IR825 could consume GSH in a concerted way.As such,the therapeutic efficacies of the released chlorambucil and the accompanied hyperthermia were augmented toward synergistically inhibiting tumor growth. 展开更多
关键词 supramolecular self-assemblies arene glutathione consumption chemo/photothermal therapy
原文传递
Supramolecular Self-assembly Formed from Cucurbit[8]uril and p-Hydroxybenzoic Acid
7
作者 WANG Chenghui YU Zhichao +5 位作者 BAI Qinghong PAN Dingwu PRIOR Timothy J TAO Zhu REDSHAW Carl XIAO Xin 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2023年第6期1058-1063,共6页
The binding behavior of cucurbit[8]uril(Q[8])and p-hydroxybenzoic acid(p-HBA)has been investigated using ^(1)H NMR titration experiments,UV-Vis absorption,isothermal titration calorimetry(ITC),and X-ray crystallograph... The binding behavior of cucurbit[8]uril(Q[8])and p-hydroxybenzoic acid(p-HBA)has been investigated using ^(1)H NMR titration experiments,UV-Vis absorption,isothermal titration calorimetry(ITC),and X-ray crystallography.Results revealed that the Q[8]can accommodate two p-HBA molecules to form a 1:2 host-guest inclusion complex in solution,namely(p-HBA)2@Q[8].From a poorly scattering crystal,we were able to identify two symmetry unique Q[8]rings,but with different p-HBA fillings.The structure can be represented as Q[8]+1.5 p-HBA,which gives Q[8]@(p-HBA)2∙Q[8]@p-HBA as the structural formula.This supramolecular structure was screened for its ability to capture iodine.The experimental results showed that the adsorption efficiency of the supramolecular organic framework material for iodine capture was 43.8%,with an equilibrium adsorption capacity of 223.3 mg/g. 展开更多
关键词 supramolecular self-assembly CUCURBIT[8]URIL p-Hydroxybenzoic acid
原文传递
Nano/Micro-Structural Supramolecular Biopolymers: Innovative Networks with the Boundless Potential in Sustainable Agriculture 被引量:2
8
作者 Roohallah Saberi Riseh Mohadeseh Hassanisaadi +2 位作者 Masoumeh Vatankhah Rajender S.Varma Vijay Kumar Thakur 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期79-101,共23页
Sustainable agriculture plays a crucial role in meeting the growing global demand for food while minimizing adverse environmental impacts from the overuse of synthetic pesticides and conventional fertilizers.In this c... Sustainable agriculture plays a crucial role in meeting the growing global demand for food while minimizing adverse environmental impacts from the overuse of synthetic pesticides and conventional fertilizers.In this context,renewable biopolymers being more sustainable offer a viable solution to improve agricultural sustainability and production.Nano/micro-structural supramolecular biopolymers are among these innovative biopolymers that are much sought after for their unique features.These biomaterials have complex hierarchical structures,great stability,adjustable mechanical strength,stimuli-responsiveness,and self-healing attributes.Functional molecules may be added to their flexible structure,for enabling novel agricultural uses.This overview scrutinizes how nano/micro-structural supramolecular biopolymers may radically alter farming practices and solve lingering problems in agricultural sector namely improve agricultural production,soil health,and resource efficiency.Controlled bioactive ingredient released from biopolymers allows the tailored administration of agrochemicals,bioactive agents,and biostimulators as they enhance nutrient absorption,moisture retention,and root growth.Nano/micro-structural supramolecular biopolymers may protect crops by appending antimicrobials and biosensing entities while their eco-friendliness supports sustainable agriculture.Despite their potential,further studies are warranted to understand and optimize their usage in agricultural domain.This effort seeks to bridge the knowledge gap by investigating their applications,challenges,and future prospects in the agricultural sector.Through experimental investigations and theoretical modeling,this overview aims to provide valuable insights into the practical implementation and optimization of supramolecular biopolymers in sustainable agriculture,ultimately contributing to the development of innovative and eco-friendly solutions to enhance agricultural productivity while minimizing environmental impact. 展开更多
关键词 supramolecular Biopolymers Sustainable agriculture NANOTECHNOLOGY
下载PDF
Bis-naphthalimide-based supramolecular self-assembly system for selective and colorimetric detection of oxalyl chloride and phosgene in solution and gas phase
9
作者 Qingqing Wang Huijuan Wu +3 位作者 Aiping Gao Xuefei Ge Xueping Chang Xinhua Cao 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第6期492-496,共5页
Two bis-naphthalimide-based supramolecular gelators(NN-3 and NN-4)with a little difference of position of amino groups were designed and synthesized for the detection of oxaloyl chloride and phosgene.Energy transfer c... Two bis-naphthalimide-based supramolecular gelators(NN-3 and NN-4)with a little difference of position of amino groups were designed and synthesized for the detection of oxaloyl chloride and phosgene.Energy transfer could be occurred between two naphthalimide groups in molecules NN-3 and NN-4.Yellow gels NN-3 and NN-4 were formed in some mixed solvents,and nanofibers with different size were obtained in these gels.The self-assembly processes of NN-3 and NN-4 in different solvents were investigated by UV-vis absorption,fluorescent spectra,SEM,FTIR,XRD and NMR.Gelators NN-3 and NN-4 could selectively detect oxaloyl chloride in solution and film states,but detect phosgene only in solution.NN-3exhibited the ratiometric detection ability towards oxaloyl chloride and phosgene with the low limit of detection(LOD)of 210 nmol/L and 90 nmol/L,respectively.NN-4 as the corresponding control sample,it owned the higher LOD towards oxaloyl chloride and phosgene of 12.4μmol/L and 64μmol/L,respectively.Interestingly,films NN-3 and NN-4 could sensitively detect oxaloyl chloride gases with the low LOD of2.0 ppm and 8.34 ppm,respectively.The detection mechanisms of NN-3 and NN-4 were well studied by1H NMR titration,HRMS and theoretical calculation. 展开更多
关键词 Bis-naphthalimide self-assembly Colorimetric detection Multi-modes
原文传递
Interfacial Modification of NiO_(x)by Self-assembled Monolayer for Efficient and Stable Inverted Perovskite Solar Cells 被引量:1
10
作者 Xin Yu Yandong Wang +5 位作者 Liufei Li Shantao Zhang Shuang Gao Mao Liang Wen-Hua Zhang Shangfeng Yang 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2024年第4期553-562,I0080-I0091,I0095,共23页
NiO_(x)as a hole transport material for inverted perovskite solar cells has received great attention owing to its high transparency,low fabrication temperature,and superior stability.However,the mismatched energy leve... NiO_(x)as a hole transport material for inverted perovskite solar cells has received great attention owing to its high transparency,low fabrication temperature,and superior stability.However,the mismatched energy levels and possible redox reactions at the NiO_(x)/perovskite interface severely limit the performance of NiO_(x) based inverted perovskite solar cells.Herein,we introduce a p-type self-assembled monolayer between NiO_(x)and perovskite layers to modify the interface and block the undesirable redox reaction between perovskite and NiO_(x)The selfassembled monolayer molecules all contain phosphoric acid function groups,which can be anchored onto the NiOr surface and passivate the surface defect.Moreover,the introduction of self-assembled monolayers can regulate the energy level structure of NiO_(x),reduce the interfacial band energy offset,and hence promote the hole transport from perovskite to NiO_(x)layer.Consequently,the device performance is significantly enhanced in terms of both power conversion efficiency and stability. 展开更多
关键词 Perovskite solar cell NiO_(x) self-assembled monolayer Interfacial engineering Stability
下载PDF
Controlling Molecular Packing in Aqueous Metallosupramolecular Self-assembly by Ligand Geometry
11
作者 Papri Sutar Torsten Dunnebacke +3 位作者 Zulema Fernández Timo Krüer Christina Rest Gustavo Fernández 《Precision Chemistry》 2023年第5期332-340,共9页
The coordination geometry of d8 transition metal complexes has been successfully exploited as a tool to tune photophysical properties and self-assembly pathways of supramolecular polymerization processes,with a focus ... The coordination geometry of d8 transition metal complexes has been successfully exploited as a tool to tune photophysical properties and self-assembly pathways of supramolecular polymerization processes,with a focus being primarily placed on organic media.Expanding such controlled supramolecular and photophysical properties to assemblies in aqueous media by molecular design is,however,still challenging due to the difficulty in programming noncovalent interactions in water.Herein,we tackle this challenge by analyzing the aqueous self-assembly of amphiphilic Pt(II)complexes of different molecular geometry in order to control self-assembly and metal−metal interactions in aqueous media.To this end,we have designed two Pt(II)complexes,1 and 2,containing an identical oligophenyleneethynylene(OPE)-based aromatic scaffold that differ in the molecular geometry(linear vs V-shaped)imposed by ligand substitution and studied their comparative self-assembly behavior in aqueous media.Even though both molecules follow the isodesmic mechanism of self-assembly,their structural difference strongly influences the molecular packing in aqueous media,which in turn impacts the photophysical properties(i.e.absence or presence of MMLCT)and the self-assembly outcome.While the molecular geometry for 2 enforces short Pt…Pt contacts driven by an efficient face-to-face stacking of the OPE backbone,the antiparallel packing of 1 with slight translational offset does not allow the formation of short Pt…Pt contacts.Such a distinct interplay of interactions for 1 and 2 in aqueous media leads to significant differences in photoluminescence. 展开更多
关键词 self-assemblY supramolecular polymerization amphiphilic systems π-conjugated systems Pt(II)complexes
原文传递
Self-assembly of perovskite nanocrystals:From driving forces to applications
12
作者 Yi Li Fei Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期561-578,I0013,共19页
Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review ... Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review discusses the driving forces behind the self-assembly process of perovskite NCs,and the commonly used self-assembly methods and different self-assembly structures are detailed.Subsequently,we summarize the collective optoelectronic properties and application areas of perovskite superlattice structures.Finally,we conclude with an outlook on the potential issues and future challenges in developing perovskite NCs. 展开更多
关键词 self-assemblY Metal halide perovskite NANOCRYSTALS Driving forces
下载PDF
Alcohol solvent effect on the self-assembly behaviors of lignin oligomers
13
作者 Ya Ma Zhicheng Jiang +4 位作者 Yafei Luo Xingjie Guo Xudong Liu Yiping Luo Bi Shi 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期597-603,共7页
The interactions between lignin oligomers and solvents determine the behaviors of lignin oligomers self-assembling into uniform lignin nanoparticles(LNPs).Herein,several alcohol solvents,which readily interact with th... The interactions between lignin oligomers and solvents determine the behaviors of lignin oligomers self-assembling into uniform lignin nanoparticles(LNPs).Herein,several alcohol solvents,which readily interact with the lignin oligomers,were adopted to study their effects during solvent shifting process for LNPs’production.The lignin oligomers with widely distributed molecular weight and abundant guaiacyl units were extracted from wood waste(mainly consists of pine wood),exerting outstanding self-assembly capability.Uniform and spherical LNPs were generated in H_(2)O-n-propanol cosolvent,whereas irregular LNPs were obtained in H_(2)O-methanol cosolvent.The unsatisfactory self-assembly performance of the lignin oligomers in H_(2)O-methanol cosolvent could be attributed to two aspects.On one hand,for the initial dissolution state,the distinguishing Hansen solubility parameter and polarity between methanol solvent and lignin oligomers resulted in the poor dispersion of the lignin oligomers.On the other hand,strong hydrogen bonds between methanol solvent and lignin oligomers during solvent shifting process,hindered the interactions among the lignin oligomers for self-assembly. 展开更多
关键词 Lignin oligomers Alcohol solvent self-assemblY LNPs Solvent effects
下载PDF
Supramolecular polymer-based gel fracturing fluid with a double network applied in ultra-deep hydraulic fracturing
14
作者 Yong-Ping Huang Yong Hu +5 位作者 Chang-Long Liu Yi-Ning Wu Chen-Wei Zou Li-Yuan Zhang Ming-Wei Zhao Cai-Li Dai 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1875-1888,共14页
A gel based on polyacrylamide,exhibiting delayed crosslinking characteristics,emerges as the preferred solution for mitigating degradation under conditions of high temperature and extended shear in ultralong wellbores... A gel based on polyacrylamide,exhibiting delayed crosslinking characteristics,emerges as the preferred solution for mitigating degradation under conditions of high temperature and extended shear in ultralong wellbores.High viscosity/viscoelasticity of the fracturing fluid was required to maintain excellent proppant suspension properties before gelling.Taking into account both the cost and the potential damage to reservoirs,polymers with lower concentrations and molecular weights are generally preferred.In this work,the supramolecular action was integrated into the polymer,resulting in significant increases in the viscosity and viscoelasticity of the synthesized supramolecular polymer system.The double network gel,which is formed by the combination of the supramolecular polymer system and a small quantity of Zr-crosslinker,effectively resists temperature while minimizing permeability damage to the reservoir.The results indicate that the supramolecular polymer system with a molecular weight of(268—380)×10^(4)g/mol can achieve the same viscosity and viscoelasticity at 0.4 wt%due to the supramolecular interaction between polymers,compared to the 0.6 wt%traditional polymer(hydrolyzed polyacrylamide,molecular weight of 1078×10^(4)g/mol).The supramolecular polymer system possessed excellent proppant suspension properties with a 0.55 cm/min sedimentation rate at 0.4 wt%,whereas the0.6 wt%traditional polymer had a rate of 0.57 cm/min.In comparison to the traditional gel with a Zrcrosslinker concentration of 0.6 wt%and an elastic modulus of 7.77 Pa,the double network gel with a higher elastic modulus(9.00 Pa)could be formed only at 0.1 wt%Zr-crosslinker,which greatly reduced the amount of residue of the fluid after gel-breaking.The viscosity of the double network gel was66 m Pa s after 2 h shearing,whereas the traditional gel only reached 27 m Pa s. 展开更多
关键词 Ultra-deep reservoir Gel fracturing fluid Double network supramolecular polymer system Proppant suspension property
下载PDF
Enhanced Ion-Selective Diffusion Achieved by Supramolecular Interaction for High Thermovoltage and Thermal Stability
15
作者 Jiale Ke Xing Zhao +4 位作者 Jie Yang Kai Ke Yu Wang Mingbo Yang Wei Yang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期200-208,共9页
Thermoelectric(TE)generators capable of converting thermal energy into applicable electricity have gained great popularity among emerging energy conversion technologies.Biopolymer-based ionic thermoelectric(i-TE)mater... Thermoelectric(TE)generators capable of converting thermal energy into applicable electricity have gained great popularity among emerging energy conversion technologies.Biopolymer-based ionic thermoelectric(i-TE)materials are promising candidates for energy conversion systems because of their wide sources,innocuity,and low manufacturing cost.However,common physically crosslinked biopolymer gels induced by single hydrogen bonding or hydrophobic interaction suffer from low differential thermal voltage and poor thermodynamic stability.Here,we develop a novel i-TE gel with supramolecular structures through multiple noncovalent interactions between ionic liquids(ILs)and gelatin molecular chains.The thermopower and thermoelectric power factor of the ionic gels are as high as 2.83 mV K-1 and 18.33μW m^(-1)K^(-2),respectively.The quasi-solid-state gelatin-[EMIM]DCA i-TE cells achieve ultrahigh 2 h output energy density(E_(2h)=9.9 mJ m^(-2))under an optimal temperature range.Meanwhile,the remarkable stability of the supramolecular structure provides the i-TE hydrogels with a thermal stability of up to 80℃.It breaks the limitation that biopolymer-based i-TE gels can only be applied in the low temperature range and enables biopolymer-based i-TE materials to pursue better performance in a higher temperature range. 展开更多
关键词 biopolymer gel ionic liquid multiple noncovalent interactions supramolecular structure thermoelectric conversion
下载PDF
Chitosan/Sodium Alginate Multilayer pH-Sensitive Films Based on Layer-by-Layer Self-Assembly for Intelligent Packaging
16
作者 Mingxuan He Yahui Zheng +4 位作者 Jiaming Shen Jiawei Shi Yongzheng Zhang Yinghong Xiao Jianfei Che 《Journal of Renewable Materials》 EI CAS 2024年第2期215-233,共19页
The abuse of plastic food packaging has brought about severe white pollution issues around the world.Developing green and sustainable biomass packaging is an effective way to solve this problem.Hence,a chitosan/sodium... The abuse of plastic food packaging has brought about severe white pollution issues around the world.Developing green and sustainable biomass packaging is an effective way to solve this problem.Hence,a chitosan/sodium alginate-based multilayer film is fabricated via a layer-by-layer(LBL)self-assembly method.With the help of superior interaction between the layers,the multilayer film possesses excellent mechanical properties(with a tensile strength of 50 MPa).Besides,the film displays outstanding water retention property(blocking moisture of 97.56%)and ultraviolet blocking property.Anthocyanin is introduced into the film to detect the food quality since it is one natural plant polyphenol that is sensitive to the pH changes ranging from 1 to 13 in food when spoilage occurs.It is noted that the film is also bacteriostatic which is desired for food packaging.This study describes a simple technique for the development of advanced multifunctional and fully biodegradable food packaging film and it is a sustainable alternative to plastic packaging. 展开更多
关键词 CHITOSAN ALGINATE layer-by-layer self-assembly PH-SENSITIVE multilayer films
下载PDF
Hollow tubes constructed by carbon nanotubes self-assembly for CO_(2) capture
17
作者 CHEN Xu-rui WU Jun +1 位作者 GU Li CAO Xue-bo 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2256-2267,共12页
Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their mac... Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their macroscopic assembly.The present study employed a gentle and direct self-assembly technique,wherein controlled growth of CNT sheaths occurred on the metal wire’s surface,followed by etching of the remaining metal to obtain the hollow tubes composed of CNTs.By controlling the growth time and temperature,it is possible to alter the thickness of the CNTs sheath.After immersing in a solution containing 1 g/L of CNTs at 60℃ for 24 h,the resulting CNTs layer achieved a thickness of up to 60μm.These hollow CNTs tubes with varying inner diameters were prepared through surface reinforcement using polymers and sacrificing metal wires,thereby exhibiting exceptional attributes such as robustness,flexibility,air tightness,and high adsorption capacity that effectively capture CO_(2) from the gas mixture. 展开更多
关键词 carbon nanotubes self-assemblY hollow tubes CO_(2) capture
下载PDF
Role of self-assembled molecules’anchoring groups for surface defect passivation and dipole modulation in inverted perovskite solar cells
18
作者 Xiaoyu Wang Muhammad Faizan +3 位作者 Kun Zhou Xinjiang Wang Yuhao Fu Lijun Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期108-115,共8页
Inverted perovskite solar cells have gained prominence in industrial advancement due to their easy fabrication,low hysteresis effects,and high stability.Despite these advantages,their efficiency is currently limited b... Inverted perovskite solar cells have gained prominence in industrial advancement due to their easy fabrication,low hysteresis effects,and high stability.Despite these advantages,their efficiency is currently limited by excessive defects and poor carrier transport at the perovskite-electrode interface,particularly at the buried interface between the perovskite and transparent conductive oxide(TCO).Recent efforts in the perovskite community have focused on designing novel self-assembled molecules(SAMs)to improve the quality of the buried interface.However,a notable gap remains in understanding the regulation of atomic-scale interfacial properties of SAMs between the perovskite and TCO interfaces.This understanding is crucial,particularly in terms of identifying chemically active anchoring groups.In this study,we used the star SAM([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)as the base structure to investigate the defect passivation effects of eight common anchoring groups at the perovskite-TCO interface.Our findings indicate that the phosphonic and boric acid groups exhibit notable advantages.These groups fulfill three key criteria:they provide the greatest potential for defect passivation,exhibit stable adsorption with defects,and exert significant regulatory effects on interface dipoles.Ionized anchoring groups exhibit enhanced passivation capabilities for defect energy levels due to their superior Lewis base properties,which effectively neutralize local charges near defects.Among various defect types,iodine vacancies are the easiest to passivate,whereas iodine-substituted lead defects are the most challenging to passivate.Our study provides comprehensive theoretical insights and inspiration for the design of anchoring groups in SAMs,contributing to the ongoing development of more efficient inverted perovskite solar cells. 展开更多
关键词 inverted perovskite solar cell defect passivation self-assembled molecule interface engineering first-principles calculation
下载PDF
Factors resisting protein adsorption on hydrophilic/hydrophobic self-assembled monolayers terminated with hydrophilic hydroxyl groups
19
作者 毛党新 吴园燕 涂育松 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期605-612,共8页
The hydroxyl-terminated self-assembled monolayer(OH-SAM),as a surface resistant to protein adsorption,exhibits substantial potential in applications such as ship navigation and medical implants,and the appropriate str... The hydroxyl-terminated self-assembled monolayer(OH-SAM),as a surface resistant to protein adsorption,exhibits substantial potential in applications such as ship navigation and medical implants,and the appropriate strategies for designing anti-fouling surfaces are crucial.Here,we employ molecular dynamics simulations and alchemical free energy calculations to systematically analyze the factors influencing resistance to protein adsorption on the SAMs terminated with single or double OH groups at three packing densities(∑=2.0 nm^(-2),4.5 nm^(-2),and 6.5 nm^(-2)),respectively.For the first time,we observed that the compactness and order of interfacial water enhance its physical barrier effect,subsequently enhancing the resistance of SAM to protein adsorption.Notably,the spatial hindrance effect of SAM leads to the embedding of protein into SAM,resulting in a lack of resistance of SAM towards protein.Furthermore,the number of hydroxyl groups per unit area of double OH-terminated SAM at ∑=6.5 nm^(-2) is approximately 2 to 3 times that of single OH-terminated SAM at ∑=6.5 nm^(-2) and 4.5 nm^(-2),consequently yielding a weaker resistance of double OH-terminated SAM towards protein.Meanwhile,due to the structure of SAM itself,i.e.,the formation of a nearly perfect ice-like hydrogen bond structure,the SAM exhibits the weakest resistance towards protein.This study will complement and improve the mechanism of OH-SAM resistance to protein adsorption,especially the traditional barrier effect of interfacial water. 展开更多
关键词 molecular dynamics simulation self-assembled monolayer resistance to protein adsorption hydrogen bond interfacial water
下载PDF
A Non-parametric Gradient-Based Shape Optimization Approach for Solving Inverse Problems in Directed Self-Assemblyof Block Copolymers
20
作者 Daniil Bochkov Frederic Gibou 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1472-1489,共18页
We consider the inverse problem of finding guiding pattern shapes that result in desired self-assembly morphologies of block copolymer melts.Specifically,we model polymer selfassembly using the self-consistent field t... We consider the inverse problem of finding guiding pattern shapes that result in desired self-assembly morphologies of block copolymer melts.Specifically,we model polymer selfassembly using the self-consistent field theory and derive,in a non-parametric setting,the sensitivity of the dissimilarity between the desired and the actual morphologies to arbitrary perturbations in the guiding pattern shape.The sensitivity is then used for the optimization of the confining pattern shapes such that the dissimilarity between the desired and the actual morphologies is minimized.The efficiency and robustness of the proposed gradient-based algorithm are demonstrated in a number of examples related to templating vertical interconnect accesses(VIA). 展开更多
关键词 Block copolymers Directed self-assembly Inverse design Shape optimization Vertical interconnect accesses(VIA)
下载PDF
上一页 1 2 196 下一页 到第
使用帮助 返回顶部