The polymerization of methyl methacrylate (MMA) at the surface of titanium dioxide (TiO 2) particles was carried out by using soapless emulsion polymerization method. In this process, composite particles with TiO 2 ...The polymerization of methyl methacrylate (MMA) at the surface of titanium dioxide (TiO 2) particles was carried out by using soapless emulsion polymerization method. In this process, composite particles with TiO 2 core and polymer shell were obtained and thus the surface of titanium dioxide was modified. The encapsulating polymer was characterized by TEM, DTA and IR. In addition, the surface properties of the original and modified TiO 2 were studied by Zeta potential measurement and determination of contact angle and dispersability.展开更多
Investigating zeolites as hydrogen storage scaffolds is imperative due to their porous nature and favorable physicochemical properties.Nevertheless,the storage capacity of the unmodified zeolites has been rather unsat...Investigating zeolites as hydrogen storage scaffolds is imperative due to their porous nature and favorable physicochemical properties.Nevertheless,the storage capacity of the unmodified zeolites has been rather unsatisfactory(0.224%-1.082%(mass))compared to its modified counterpart.Thus,the contemporary focus on enhancing hydrogen storage capacities has led to significant attention towards the utilization of modified zeolites,with studies exploring surface modifications through physical and chemical treatments,as well as the integration of various active metals.The enhanced hydrogen storage properties of zeolites are attributed to the presence of aluminosilicates from alkaline and alkaline-earth metals,resulting in increased storage capacity through interactions with the charge density of these aluminosilicates.Therefore,there is a great demand to critically review their role such as well-defined topology,pore structure,good thermal stability,and tunable hydrophilicity in enhanced hydrogen storage.This article aimed to critically review the recent research findings based on modified zeolite performance for enhanced hydrogen storage.Some of the factors affecting the hydrogen storage capacities of zeolites that can affect the rate of reaction and the stability of the adsorbent,like pressure,structure,and morphology were studied,and examined.Then,future perspectives,recommendations,and directions for modified zeolites were discussed.展开更多
Biodegradable implants from magnesium(Mg)alloys have emerged in the biomedical field especially in the orthopedic and cardiovascular stent applications owing to their low density,high specific strength,excellent machi...Biodegradable implants from magnesium(Mg)alloys have emerged in the biomedical field especially in the orthopedic and cardiovascular stent applications owing to their low density,high specific strength,excellent machinability,good biocompatibility,and biodegradability.The primary shortcoming of Mg-based implants is their low corrosion resistance in the physiological environment,which results in premature mechanical integrity loss before adequate healing and the production of excessive hydrogen gas,which is harmful to the body tissues and negatively affects the biocompatibility of the implant.Laser surface modification has recently received attention because it can improve the surface properties such as surface chemistry,roughness,topography,corrosion resistance,wear resistance,hydrophilicity,and thus cell response to the surface of the material.The composition and microstructures including textures and phases of laser-treated surfaces depend largely on the laser processing parameters(input laser power,laser scan velocity,frequency,pulse duration,pressure,gas circulation,working time,spot size,beam focal position,and laser track overlap)and the thermophysical properties of the substrate(solubility,melting point,and boiling point).This review investigates the impacts of various laser surface modification techniques including laser surface melting,laser surface alloying,laser cladding,laser surface texturing,and laser shock peening,and highlights their significance in improving the surface properties of biodegradable Mg alloys for implant applications.Additionally,we explore how different laser process parameters affect its composition,microstructure,and surface properties in each laser surface modification technique.展开更多
The ohmic contact interface between diamond and metal is essential for the application of diamond detectors.Surface modification can significantly affect the contact performance and eliminate the interface polarizatio...The ohmic contact interface between diamond and metal is essential for the application of diamond detectors.Surface modification can significantly affect the contact performance and eliminate the interface polarization effect.However,the radiation stability of a diamond detector is also sensitive to surface modification.In this work,the influence of surface modification technology on a diamond ohmic contact under high-energy radiation was investigated.Before radiation,the specific contact resistivities(ρc)between Ti/Pt/Au-hydrogen-terminated diamond(H-diamond)and Ti/Pt/Au-oxygenterminated diamond(O-diamond)were 2.0×10^(-4)W·cm^(2) and 4.3×10^(-3)Wcm^(2),respectively.After 10 MeV electron radiation,the ρc of Ti/Pt/Au H-diamond and Ti/Pt/Au O-diamond were 5.3×10^(-3)W·cm^(2)and 9.1×10^(-3)W·cm^(2),respectively.The rates of change of ρc of H-diamond and O-diamond after radiation were 2550%and 112%,respectively.The electron radiation promotes bond reconstruction of the diamond surface,resulting in an increase in ρc.展开更多
Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage,reduced voltage decay and enhanced rat...Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage,reduced voltage decay and enhanced rate performance,whereas the high lithium residues on its surface impairs the structure stability and long-term cycle performance.Herein,a facile multifunctional surface modification method is implemented to eliminate surface lithium residues of full concentration gradient lithium-rich layered oxides by a wet chemistry reaction with tetrabutyl titanate and the post-annealing process.It realizes not only a stable Li_(2)TiO_(3)coating layer with 3D diffusion channels for fast Li^(+)ions transfer,but also dopes partial Ti^(4+)ions into the sub-surface region of full concentration gradient lithium-rich layered oxides to further strengthen its crystal structure.Consequently,the modified full concentration gradient lithium-rich layered oxides exhibit improved structure stability,elevated thermal stability with decomposition temperature from 289.57℃to 321.72℃,and enhanced cycle performance(205.1 mAh g^(-1)after 150 cycles)with slowed voltage drop(1.67 mV per cycle).This work proposes a facile and integrated modification method to enhance the comprehensive performance of full concentration gradient lithium-rich layered oxides,which can facilitate its practical application for developing higher energy density lithium-ion batteries.展开更多
Solving intrinsic structural problems such as low conductivity is the main challenge to promote the commercial application of Li_(2)TiSiO_(5).In this study,Li_(2)TiSiO_(5)is synthesized by the sol-gelmethod,and the su...Solving intrinsic structural problems such as low conductivity is the main challenge to promote the commercial application of Li_(2)TiSiO_(5).In this study,Li_(2)TiSiO_(5)is synthesized by the sol-gelmethod,and the surface modification of Li_(2)TiSiO_(5)is carried out at different temperatures using low-temperature plasma to enhance its lithium storage performance.The morphological structure and electrochemical tests demonstrate that plasma treatment can improve the degree of agglomeration.The peak position of the plasma-treated Li_(2)TiSiO_(5)is shifted to a lower angle,and the shift angle increases with increasing sputtering power.Li_(2)TiSiO_(5)after 300 W bombardment shows excellent capacity(144.7 mA·hg^(−1)after 500 cycles at 0.1 Ag^(−1))and rate performance(140 mA·hg^(−1)at 5 Ag^(−1)).Electrochemical analysis indicates that excellent electrochemical performance is attributed to the enhancement of electronic and ionic conductivity by plasma bombardment.展开更多
The last several years have witnessed the prosperous development of zinc-ion batteries(ZIBs),which are considered as a promising competitor of energy storage systems thanks to their low cost and high safety.However,th...The last several years have witnessed the prosperous development of zinc-ion batteries(ZIBs),which are considered as a promising competitor of energy storage systems thanks to their low cost and high safety.However,the reversibility and availability of this system are blighted by problems such as uncontrollable dendritic growth,hydrogen evolution,and corrosion passivation on anode side.A functionally and structurally well-designed anode current collectors(CCs)is believed as a viable solution for those problems,with a lack of summarization according to its working mechanisms.Herein,this review focuses on the challenges of zinc anode and the mechanisms of modified anode CCs,which can be divided into zincophilic modification,structural design,and steering the preferred crystal facet orientation.The possible prospects and directions on zinc anode research and design are proposed at the end to hopefully promote the practical application of ZIBs.展开更多
Magnesium(Mg)alloys are generally used in light-weight structural applications due to their higher specific strength.However,the usage of these Mg alloys is limited due to their poor formability at room temperature,wh...Magnesium(Mg)alloys are generally used in light-weight structural applications due to their higher specific strength.However,the usage of these Mg alloys is limited due to their poor formability at room temperature,which is attributed to lower count of slip systems associated with the hcp crystal structure.To address these limitations,several new magnesium alloys and also many processing strategies have been developed and reported in the literature.ZE41 Mg is an alloy with significant quantities of zinc(Zn)and rare earth(RE)elements and has emerged as a promising material for aerospace,automotive,electronics,biomedical and many other industries.To make this alloy more competitive and viable,it should possess better mechanical and corrosion properties.Hence,the current paper reviews the effect of bulk mechanical processing on grain refinement,microstructural modification,and corresponding changes in the mechanical behaviour of ZE41Mg alloy.Further,the effect of various surface modification techniques on altering the surface microstructure and surface properties such as wear and corrosion are also briefly summarized and presented.This review also discusses the challenges and the future perspectives in developing high-performing ZE41 Mg alloys.展开更多
Organic depressants have low selectivity in separating molybdenite and talc because their metal sites lack activity for organics chemisorption.In this study,surface modification by copper sulfate was used to induce th...Organic depressants have low selectivity in separating molybdenite and talc because their metal sites lack activity for organics chemisorption.In this study,surface modification by copper sulfate was used to induce the differential adsorption of pectin onto molybdenite and talc surfaces for enhanced flotation separation.Contact-angle experiments,scanning electron microscopy,adsorption measurements,timeof-flight secondary-ion mass spectrometry,and X-ray photoelectron spectroscopy analyses were conducted to reveal the interaction mechanism.Results illustrated that molybdenite and talc could not be separated using pectin alone,while molybdenite was selectively depressed after surface modification by copper sulfate and this effect was strengthened under alkaline conditions.Metal sites(Mg,Si and Mo)of talc and molybdenite themselves were unable to react with pectin,whereas Cu+would deposit and further function as active site for pectin chemisorption after surface modification.However,the quantity of deposited Cu sites dropped on talc surface and increased on molybdenite surface with increased pH,and the Mo atoms of molybdenite crystal were activated to take part in pectin chemisorption.Therefore,more pectin was adhered on molybdenite surface,which imparted molybdenite stronger wettability.Herein,surface-modification through metal ions can enable the differential adsorption of organic depressants and enhance the flotation separation of minerals.展开更多
Hydrophobic treatment of the catalyst surfaces can suppress the competitive hydrogen evolution reaction(HER) during the nitrogen reduction reaction(NRR).In this work,the surface of Ti_(3)C_(2)Ti_(x) MXene is modified ...Hydrophobic treatment of the catalyst surfaces can suppress the competitive hydrogen evolution reaction(HER) during the nitrogen reduction reaction(NRR).In this work,the surface of Ti_(3)C_(2)Ti_(x) MXene is modified by cetyltrimethylammonium bromide(CTAB) and trimethoxy(3,3,4,4,5,5,6,6,7,7,8,8,8-trideca fluorooctyl) silane(FOTS) to increase the hydrophobicity of MXenes.The ammonia(NH_(3)) production rate and faradaic efficiency(FE) are improved from 37.62 to 54.01 μg h^(-1)mg_(cat)^(-1).and 5.5% to 18.1% at-0.7 V vs.RHE,respectively after surface modification.^(15)N isotopic labeling experiment confirms that nitrogen in produced ammonia originates from N_(2) in the electrolyte.The excellent NRR activity of surface hydrophobic MXenes is mainly due to surfactant molecules,which inhibit the entry of water molecules and the competitive HER,which have been verified by in situ FT-IR,DFT and molecular dynamics calculations.This strategy provides an ingenious method to design more active NRR electrocatalysts.展开更多
Systematic optimization of the photocatalyst and investigation of the role of each component is important to maximizing catalytic activity and comprehending the photocatalytic conversion of CO_(2) reduction to solar f...Systematic optimization of the photocatalyst and investigation of the role of each component is important to maximizing catalytic activity and comprehending the photocatalytic conversion of CO_(2) reduction to solar fuels.A surface-modified Ag@Ru-P25 photocatalyst with H_(2)O_(2) treatment was designed in this study to convert CO_(2) and H_(2)O vapor into highly selective CH4.Ru doping followed by Ag nanoparticles(NPs)cocatalyst deposition on P25(TiO_(2))enhances visible light absorption and charge separation,whereas H_(2)O_(2) treatment modifies the surface of the photocatalyst with hydroxyl(–OH)groups and promotes CO_(2) adsorption.High-resonance transmission electron microscopy,X-ray photoelectron spectroscopy,X-ray absorption near-edge structure,and extended X-ray absorption fine structure techniques were used to analyze the surface and chemical composition of the photocatalyst,while thermogravimetric analysis,CO_(2) adsorption isotherm,and temperature programmed desorption study were performed to examine the significance of H_(2)O_(2) treatment in increasing CO_(2) reduction activity.The optimized Ag1.0@Ru1.0-P25 photocatalyst performed excellent CO_(2) reduction activity into CO,CH4,and C2H6 with a~95%selectivity of CH4,where the activity was~135 times higher than that of pristine TiO_(2)(P25).For the first time,this work explored the effect of H_(2)O_(2) treatment on the photocatalyst that dramatically increases CO_(2) reduction activity.展开更多
While the electrochemical nitrogen reduction reaction(NRR) represents a prospective blueprint for environmentally renewable ammonia generation,it has yet to overcome the limitations of weak activity and inferior selec...While the electrochemical nitrogen reduction reaction(NRR) represents a prospective blueprint for environmentally renewable ammonia generation,it has yet to overcome the limitations of weak activity and inferior selectivity.In this regard,surface modification tactic was constructed to markedly enhance the activity and selectivity via introducing Sn atoms into the surface of defective cerium oxide(denoted as Sn-CeO_(2-x)) as the active and robust electrocatalyst for NRR under benign environment.The introduction of Sn atoms in CeO_(2-x)can not only inhibit the HER activity of the catalyst but also modulate the electronic structure of ceria and optimize N-Ce interaction,thus enhancing NRR activity and selectivity.Outperforming all previous CeO_(2)-based NRR catalysts,this catalyst has demonstrated an ammonia yield rate of 41.1 μg mg_(cat)^(-1) h^(-1) and an exceptional Faradic efficiency of 35.3%.This work presents a viable approach for the development of advanced NRR electrocatalysts.展开更多
The surface charge accumulation on polymers often leads to surface flashover.Current solutions are mainly based on the introduction of inorganic fillers.The high-cost process and low compatibility remain formidable ch...The surface charge accumulation on polymers often leads to surface flashover.Current solutions are mainly based on the introduction of inorganic fillers.The high-cost process and low compatibility remain formidable challenges.Moreover,existing researches on all-organic insulation focus on capturing electrons,contrary to alleviating charge accumulation.Here,an all-organic modification coating was prepared on polystyrene(PS)with the large-scale atmospheric-pressure plasma,which exhibits outperformed function in mitigating surface charge accumulation.The surface charge dissipation rate and surface conductivity are promoted by about 1.37 and 9.45 times,respectively.Simulation and experimental results show that this all-organic modification coating has a smaller electron affinity potential compared with PS.The decrease of electron affinity potential may result in accelerated surface charge decay of PS,which has never been involved in previous works.Moreover,this coating also has good reliability in a repeated surface flashover.This facile and large-scale approach brings up a novel idea for surface charge regulation and the manufacture of advanced dielectric polymers.展开更多
The nanosecond(ns) pulsed nitrogen dielectric barrier discharge(DBD) is employed to enhance the hydrophilicity of polypropylene(PP) surface and improve its application effect.The discharge characteristics of the ns pu...The nanosecond(ns) pulsed nitrogen dielectric barrier discharge(DBD) is employed to enhance the hydrophilicity of polypropylene(PP) surface and improve its application effect.The discharge characteristics of the ns pulsed nitrogen DBD with different pulse rise times(from 50to 500 ns) are investigated by electrical and optical diagnostic methods and the discharge uniformity is quantitatively analyzed by image processing method.To characterize the surface hydrophilicity,the water contact angle(WCA) is measured,and the physical morphology and chemical composition of PP before and after modification are analyzed to explore the effect of plasma on PP surface.It is found that with increasing pulse rise time from 50 to 500 ns,DBD uniformity becomes worse,energy efficiency decreases from 20% to 10.8%,and electron density decrease from 6.6 × 10^(11)to 5.5 × 10^(11)cm^(-3).The tendency of electron temperature is characterized with the intensity ratio of N_(2)/N_(2)^(+)emission spectrum,which decreases from 17.4 to15.9 indicating the decreasing of T_(e) with increasing pulse rise time from 50 to 500 ns.The PP surface treated with 50 ns pulse rise time DBD has a lower WCA(~47°),while the WCA of PP treated with 100 to 500 ns pulse rise time DBD expands gradually(~50°–57°).According to the study of the fixed-point WCA values,the DBD-treated PP surface has superior uniformity under50 ns pulse rise time(3° variation) than under 300 ns pulse rise time(8° variation).After DBD treatment,the increased surface roughness from 2.0 to 9.8 nm and hydrophilic oxygencontaining groups on the surface,i.e.hydroxyl(-OH) and carbonyl(C=O) have played the significant role to improve the sample’s surface hydrophilicity.The short pulse voltage rise time enhances the reduced electric field strength(E/n) in the discharge space and improves the discharge uniformity,which makes relatively sufficient physical and chemical reactions have taken place on the PP surface,resulting in better treatment uniformity.展开更多
Indium gallium tin oxide(IGTO)thin films have the potential for high mobility and lowtemperature processing,which makes them suitable for applications such as display backplanes and high-voltage switching devices.Howe...Indium gallium tin oxide(IGTO)thin films have the potential for high mobility and lowtemperature processing,which makes them suitable for applications such as display backplanes and high-voltage switching devices.However,very few studies have investigated the plasmaetching characteristics of IGTO and changes in its properties after etching.In this study,the etching characteristics of IGTO were investigated using Cl_(2)/Ar plasma,and changes in surface properties were analyzed.Results showed that the etch rate increased with an increase in the proportion of Cl_(2),with the highest etch rate observed at 69 nm min^(-1)in pure Cl_(2)plasma with a gas flow rate of 100 sccm.Furthermore,increased radio-frequency power caused a rise in the etch rate,while a process pressure of 15 m Torr was optimal.The primary etching mechanism for IGTO thin films under Cl_(2)plasma was a chemical reaction,and an increased work function indicated the occurrence of defects on the surface.In addition,the etching process reduced the surface roughness of Cl_(2)-containing plasma,whereas the etching process in pure Ar plasma increased surface roughness.This study contributes to a better understanding of the plasmaetching characteristics of IGTO and changes in its properties after etching,providing valuable insights for IGTO-based applications.展开更多
As the number of patients suffering from cardiovascular diseases and peripheral vascular diseases rises,the constraints of autologous transplantation remain unavoidable.As a result,artificial vascular grafts must be d...As the number of patients suffering from cardiovascular diseases and peripheral vascular diseases rises,the constraints of autologous transplantation remain unavoidable.As a result,artificial vascular grafts must be developed.Adhesion of proteins,platelets and bacteria on implants can result in stenosis,thrombus formation,and postoperative infection,which can be fatal for an implantation.Polyurethane,as a commonly used biomaterial,has been modified in various ways to deal with the adhesions of proteins,platelets,and bacteria and to stimulate endothelium adhesion.In this review,we briefly summarize the mechanisms behind adhesions,overview the current strategies of surface modifications of polyurethane biomaterials used in vascular grafts,and highlight the challenges that need to be addressed in future studies,aiming to gain a more profound understanding of how to develop artificial polyurethane vascular grafts with an enhanced implantation success rate and reduced side effect.展开更多
Ultra-high molecular weight polyethylene(UHMWPE)fiber is a new kind of high-performance fiber.Due to its excellent physical and chemical characteristics,it is widely used in various fields.However,the surface UHMWPE f...Ultra-high molecular weight polyethylene(UHMWPE)fiber is a new kind of high-performance fiber.Due to its excellent physical and chemical characteristics,it is widely used in various fields.However,the surface UHMWPE fiber is smooth and demonstrates no-polar groups.The weak interfacial adhesion between fiber and resin seri-ously restricts the applications of UHMWPE fiber.Therefore,the surface modification treatments of UHMWPE fiber are used to improve the interfacial adhesion strength.The modified method by adding nanomaterials elu-cidates the easy fabrication,advanced equipment and proper technology.Thus,the progress of UHMWPE nanocomposite fibers prepared via adding various nanofillers are reviewed.Meanwhile,the effects of other various methods on surface modification are also reviewed.This work advances the various design strategies about nano technologies on improving interfacial adhesion performance via treatment methodologies.展开更多
We review the fundamental properties and significant issues related to Cu/graphite composites.In particular,recent research on the interfacial modification of Cu/graphite composites is addressed,including the metal-mo...We review the fundamental properties and significant issues related to Cu/graphite composites.In particular,recent research on the interfacial modification of Cu/graphite composites is addressed,including the metal-modified layer,carbide-modified layer,and combined modified layer.Additionally,we propose the use of ternary layered carbide as an interface modification layer for Cu/graphite composites.展开更多
Rising concerns about climate change drive the demand for lightweight components.Magnesium(Mg)alloys are highly valued for their low weight,making them increasingly important in various industries.Researchers focusing...Rising concerns about climate change drive the demand for lightweight components.Magnesium(Mg)alloys are highly valued for their low weight,making them increasingly important in various industries.Researchers focusing on enhancing the characteristics of Mg alloys and developing their Metal Matrix Composites(MMCs)have gained significant attention worldwide over the past decade,driven by the global shift towards lightweight materials.Friction Stir Processing(FSP)has emerged as a promising technique to enhance the properties of Mg alloys and produce Mg-MMCs.Initially,FSP adapted to refine grain size from the micro to the nano level and accelerated the development of MMCs due to its solid-state nature and the synergistic effects of microstructure refinement and reinforcement,improving strength,hardness,ductility,wear resistance,corrosion resistance,and fatigue strength.However,producing defect-free and sound FSPed Mg and Mg-MMCs requires addressing several variables and their interdependencies,which opens up a broad range of practical applications.Despite existing reviews on individual FSP of Mg,its alloys,and MMCs,an attempt has been made to analyze the latest research on these three aspects collectively to enhance the understanding,application,and effectiveness of FSP for Mg and its derivatives.This review article discusses the literature,classifies the importance of Mg alloys,provides a historical background,and explores developments and potential applications of FSPed Mg alloys.It focuses on novel fabrication methods,reinforcement strategies,machine and tool design parameters,material characterization,and integration with other methods for enhanced properties.The influence of process parameters and the emergence of defects are examined,along with specific applications in mono and hybrid composites and their microstructure evolution.The study identifies promising reinforcement materials and highlights research gaps in FSP for Mg alloys and MMCs production.It concludes with significant recommendations for further exploration,reflecting ongoing advancements in this field.展开更多
The thermal conductivity of Cu/Kovar composites was improved by suppressing element diffusion at the interfaces through the formation of FeWO_(4)coating on the Kovar particles via vacuum deposition.Cu matrix composite...The thermal conductivity of Cu/Kovar composites was improved by suppressing element diffusion at the interfaces through the formation of FeWO_(4)coating on the Kovar particles via vacuum deposition.Cu matrix composites reinforced with unmodified(Cu/Kovar)and modified Kovar(Cu/Kovar@)particles were prepared by hot pressing.The results demonstrate that the interfaces of Cu/FeWO_(4)and FeWO_(4)/Kovar in the Cu/Kovar@composites exhibit strong bonding,and no secondary phase is generated.The presence of FeWO_(4)impedes interfacial diffusion within the composite,resulting in an increase in grain size and a decrease in dislocation density.After surface modification of the Kovar particle,the thermal conductivity of Cu/Kovar@composite is increased by 110%from 40.6 to 85.6 W·m^(-1)·K^(-1).Moreover,the thermal expansion coefficient of the Cu/Kovar@composite is 9.8×10^(-6)K^(-1),meeting the electronic packaging requirements.展开更多
文摘The polymerization of methyl methacrylate (MMA) at the surface of titanium dioxide (TiO 2) particles was carried out by using soapless emulsion polymerization method. In this process, composite particles with TiO 2 core and polymer shell were obtained and thus the surface of titanium dioxide was modified. The encapsulating polymer was characterized by TEM, DTA and IR. In addition, the surface properties of the original and modified TiO 2 were studied by Zeta potential measurement and determination of contact angle and dispersability.
基金supported by the Ministry of Higher Education Malaysia through the Fundamental Research Grant Scheme(FRGS)No.FRGS/1/2021/TK0/UMP/02/37(University Ref.RDU210135).
文摘Investigating zeolites as hydrogen storage scaffolds is imperative due to their porous nature and favorable physicochemical properties.Nevertheless,the storage capacity of the unmodified zeolites has been rather unsatisfactory(0.224%-1.082%(mass))compared to its modified counterpart.Thus,the contemporary focus on enhancing hydrogen storage capacities has led to significant attention towards the utilization of modified zeolites,with studies exploring surface modifications through physical and chemical treatments,as well as the integration of various active metals.The enhanced hydrogen storage properties of zeolites are attributed to the presence of aluminosilicates from alkaline and alkaline-earth metals,resulting in increased storage capacity through interactions with the charge density of these aluminosilicates.Therefore,there is a great demand to critically review their role such as well-defined topology,pore structure,good thermal stability,and tunable hydrophilicity in enhanced hydrogen storage.This article aimed to critically review the recent research findings based on modified zeolite performance for enhanced hydrogen storage.Some of the factors affecting the hydrogen storage capacities of zeolites that can affect the rate of reaction and the stability of the adsorbent,like pressure,structure,and morphology were studied,and examined.Then,future perspectives,recommendations,and directions for modified zeolites were discussed.
基金the Australian Research Council(ARC)through the discovery grant DP210101862。
文摘Biodegradable implants from magnesium(Mg)alloys have emerged in the biomedical field especially in the orthopedic and cardiovascular stent applications owing to their low density,high specific strength,excellent machinability,good biocompatibility,and biodegradability.The primary shortcoming of Mg-based implants is their low corrosion resistance in the physiological environment,which results in premature mechanical integrity loss before adequate healing and the production of excessive hydrogen gas,which is harmful to the body tissues and negatively affects the biocompatibility of the implant.Laser surface modification has recently received attention because it can improve the surface properties such as surface chemistry,roughness,topography,corrosion resistance,wear resistance,hydrophilicity,and thus cell response to the surface of the material.The composition and microstructures including textures and phases of laser-treated surfaces depend largely on the laser processing parameters(input laser power,laser scan velocity,frequency,pulse duration,pressure,gas circulation,working time,spot size,beam focal position,and laser track overlap)and the thermophysical properties of the substrate(solubility,melting point,and boiling point).This review investigates the impacts of various laser surface modification techniques including laser surface melting,laser surface alloying,laser cladding,laser surface texturing,and laser shock peening,and highlights their significance in improving the surface properties of biodegradable Mg alloys for implant applications.Additionally,we explore how different laser process parameters affect its composition,microstructure,and surface properties in each laser surface modification technique.
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFB3608601).
文摘The ohmic contact interface between diamond and metal is essential for the application of diamond detectors.Surface modification can significantly affect the contact performance and eliminate the interface polarization effect.However,the radiation stability of a diamond detector is also sensitive to surface modification.In this work,the influence of surface modification technology on a diamond ohmic contact under high-energy radiation was investigated.Before radiation,the specific contact resistivities(ρc)between Ti/Pt/Au-hydrogen-terminated diamond(H-diamond)and Ti/Pt/Au-oxygenterminated diamond(O-diamond)were 2.0×10^(-4)W·cm^(2) and 4.3×10^(-3)Wcm^(2),respectively.After 10 MeV electron radiation,the ρc of Ti/Pt/Au H-diamond and Ti/Pt/Au O-diamond were 5.3×10^(-3)W·cm^(2)and 9.1×10^(-3)W·cm^(2),respectively.The rates of change of ρc of H-diamond and O-diamond after radiation were 2550%and 112%,respectively.The electron radiation promotes bond reconstruction of the diamond surface,resulting in an increase in ρc.
基金financially supported by the Natural Science Foundation of Shandong Province(ZR2022QB166,ZR2020KE032)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA22010600)+3 种基金the Youth Innovation Promotion Association of CAS(2021210)the Foundation of Qingdao Postdoctoral Application Program(Y63302190F)the Natural Science Foundation of Qingdao Institute ofBioenergy and Bioprocess Technology(QIBEBT SZ202101)support from the Max Planck-POSTECH-Hsinchu Center for Complex Phase Materials
文摘Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage,reduced voltage decay and enhanced rate performance,whereas the high lithium residues on its surface impairs the structure stability and long-term cycle performance.Herein,a facile multifunctional surface modification method is implemented to eliminate surface lithium residues of full concentration gradient lithium-rich layered oxides by a wet chemistry reaction with tetrabutyl titanate and the post-annealing process.It realizes not only a stable Li_(2)TiO_(3)coating layer with 3D diffusion channels for fast Li^(+)ions transfer,but also dopes partial Ti^(4+)ions into the sub-surface region of full concentration gradient lithium-rich layered oxides to further strengthen its crystal structure.Consequently,the modified full concentration gradient lithium-rich layered oxides exhibit improved structure stability,elevated thermal stability with decomposition temperature from 289.57℃to 321.72℃,and enhanced cycle performance(205.1 mAh g^(-1)after 150 cycles)with slowed voltage drop(1.67 mV per cycle).This work proposes a facile and integrated modification method to enhance the comprehensive performance of full concentration gradient lithium-rich layered oxides,which can facilitate its practical application for developing higher energy density lithium-ion batteries.
基金supported by Changzhou Basic Research Program(No.CJ20235030)the Research Initiation Fund of Changzhou University(No.ZMF23020057).
文摘Solving intrinsic structural problems such as low conductivity is the main challenge to promote the commercial application of Li_(2)TiSiO_(5).In this study,Li_(2)TiSiO_(5)is synthesized by the sol-gelmethod,and the surface modification of Li_(2)TiSiO_(5)is carried out at different temperatures using low-temperature plasma to enhance its lithium storage performance.The morphological structure and electrochemical tests demonstrate that plasma treatment can improve the degree of agglomeration.The peak position of the plasma-treated Li_(2)TiSiO_(5)is shifted to a lower angle,and the shift angle increases with increasing sputtering power.Li_(2)TiSiO_(5)after 300 W bombardment shows excellent capacity(144.7 mA·hg^(−1)after 500 cycles at 0.1 Ag^(−1))and rate performance(140 mA·hg^(−1)at 5 Ag^(−1)).Electrochemical analysis indicates that excellent electrochemical performance is attributed to the enhancement of electronic and ionic conductivity by plasma bombardment.
基金supported by the National Natural Science Foundation of China(Grant Nos.51874110 and 51604089)Natural Science Foundation of Heilongjiang Province(YQ2021B004)Open Project of State Key Laboratory of Urban Water Resource and Environment(Grant No.QA202138).
文摘The last several years have witnessed the prosperous development of zinc-ion batteries(ZIBs),which are considered as a promising competitor of energy storage systems thanks to their low cost and high safety.However,the reversibility and availability of this system are blighted by problems such as uncontrollable dendritic growth,hydrogen evolution,and corrosion passivation on anode side.A functionally and structurally well-designed anode current collectors(CCs)is believed as a viable solution for those problems,with a lack of summarization according to its working mechanisms.Herein,this review focuses on the challenges of zinc anode and the mechanisms of modified anode CCs,which can be divided into zincophilic modification,structural design,and steering the preferred crystal facet orientation.The possible prospects and directions on zinc anode research and design are proposed at the end to hopefully promote the practical application of ZIBs.
文摘Magnesium(Mg)alloys are generally used in light-weight structural applications due to their higher specific strength.However,the usage of these Mg alloys is limited due to their poor formability at room temperature,which is attributed to lower count of slip systems associated with the hcp crystal structure.To address these limitations,several new magnesium alloys and also many processing strategies have been developed and reported in the literature.ZE41 Mg is an alloy with significant quantities of zinc(Zn)and rare earth(RE)elements and has emerged as a promising material for aerospace,automotive,electronics,biomedical and many other industries.To make this alloy more competitive and viable,it should possess better mechanical and corrosion properties.Hence,the current paper reviews the effect of bulk mechanical processing on grain refinement,microstructural modification,and corresponding changes in the mechanical behaviour of ZE41Mg alloy.Further,the effect of various surface modification techniques on altering the surface microstructure and surface properties such as wear and corrosion are also briefly summarized and presented.This review also discusses the challenges and the future perspectives in developing high-performing ZE41 Mg alloys.
基金The authors would like to acknowledge the support from the National Natural Science Foundation of China(No.52174272)the Joint Funds of the National Natural Science Foundation of China(No.U1704252)+1 种基金the Fundamental Research Funds for the Central Universities of Central South University(Nos.2021zzts0306 and 2021zzts0896)the Hunan Provincial Natural Science Foundation of China(No.2020JJ5736).
文摘Organic depressants have low selectivity in separating molybdenite and talc because their metal sites lack activity for organics chemisorption.In this study,surface modification by copper sulfate was used to induce the differential adsorption of pectin onto molybdenite and talc surfaces for enhanced flotation separation.Contact-angle experiments,scanning electron microscopy,adsorption measurements,timeof-flight secondary-ion mass spectrometry,and X-ray photoelectron spectroscopy analyses were conducted to reveal the interaction mechanism.Results illustrated that molybdenite and talc could not be separated using pectin alone,while molybdenite was selectively depressed after surface modification by copper sulfate and this effect was strengthened under alkaline conditions.Metal sites(Mg,Si and Mo)of talc and molybdenite themselves were unable to react with pectin,whereas Cu+would deposit and further function as active site for pectin chemisorption after surface modification.However,the quantity of deposited Cu sites dropped on talc surface and increased on molybdenite surface with increased pH,and the Mo atoms of molybdenite crystal were activated to take part in pectin chemisorption.Therefore,more pectin was adhered on molybdenite surface,which imparted molybdenite stronger wettability.Herein,surface-modification through metal ions can enable the differential adsorption of organic depressants and enhance the flotation separation of minerals.
基金fundings from the National Natural Science Foundation of China (No. 51872173)Taishan Scholar Foundation of Shandong Province (No. tsqn201812068)+3 种基金Natural Science Foundation of Shandong Province (No. ZR2022JQ21)Higher School Youth Innovation Team of Shandong Province (No. 2019KJA013)Hong Kong Scholars Program (No. XJ2019042)Innovation and Technology Commission of the Hong Kong Special Administrative Region (No. ITC-CNERC14EG03)。
文摘Hydrophobic treatment of the catalyst surfaces can suppress the competitive hydrogen evolution reaction(HER) during the nitrogen reduction reaction(NRR).In this work,the surface of Ti_(3)C_(2)Ti_(x) MXene is modified by cetyltrimethylammonium bromide(CTAB) and trimethoxy(3,3,4,4,5,5,6,6,7,7,8,8,8-trideca fluorooctyl) silane(FOTS) to increase the hydrophobicity of MXenes.The ammonia(NH_(3)) production rate and faradaic efficiency(FE) are improved from 37.62 to 54.01 μg h^(-1)mg_(cat)^(-1).and 5.5% to 18.1% at-0.7 V vs.RHE,respectively after surface modification.^(15)N isotopic labeling experiment confirms that nitrogen in produced ammonia originates from N_(2) in the electrolyte.The excellent NRR activity of surface hydrophobic MXenes is mainly due to surfactant molecules,which inhibit the entry of water molecules and the competitive HER,which have been verified by in situ FT-IR,DFT and molecular dynamics calculations.This strategy provides an ingenious method to design more active NRR electrocatalysts.
基金supported by the Ministry of Science and ICT in Korea(2021R1A2C2009459)X-ray absorption spectra were obtained from Pohang Accelerator Laboratory(PAL)10C beamlinesupported by the US Department of Energy,Office of Science,Office of Advanced Scientific Computing Research,and Scientific Discovery through Advanced Computing(SciDAC)program under Award Number DE-SC0022209.
文摘Systematic optimization of the photocatalyst and investigation of the role of each component is important to maximizing catalytic activity and comprehending the photocatalytic conversion of CO_(2) reduction to solar fuels.A surface-modified Ag@Ru-P25 photocatalyst with H_(2)O_(2) treatment was designed in this study to convert CO_(2) and H_(2)O vapor into highly selective CH4.Ru doping followed by Ag nanoparticles(NPs)cocatalyst deposition on P25(TiO_(2))enhances visible light absorption and charge separation,whereas H_(2)O_(2) treatment modifies the surface of the photocatalyst with hydroxyl(–OH)groups and promotes CO_(2) adsorption.High-resonance transmission electron microscopy,X-ray photoelectron spectroscopy,X-ray absorption near-edge structure,and extended X-ray absorption fine structure techniques were used to analyze the surface and chemical composition of the photocatalyst,while thermogravimetric analysis,CO_(2) adsorption isotherm,and temperature programmed desorption study were performed to examine the significance of H_(2)O_(2) treatment in increasing CO_(2) reduction activity.The optimized Ag1.0@Ru1.0-P25 photocatalyst performed excellent CO_(2) reduction activity into CO,CH4,and C2H6 with a~95%selectivity of CH4,where the activity was~135 times higher than that of pristine TiO_(2)(P25).For the first time,this work explored the effect of H_(2)O_(2) treatment on the photocatalyst that dramatically increases CO_(2) reduction activity.
基金financially supported by the National Natural Science Foundation of China (51972349 and 91963210)the Natural Science Foundation of Guangdong Province (2022A1515011596)the Key Research and Development Program of Guangdong Province (2020B0101690001)。
文摘While the electrochemical nitrogen reduction reaction(NRR) represents a prospective blueprint for environmentally renewable ammonia generation,it has yet to overcome the limitations of weak activity and inferior selectivity.In this regard,surface modification tactic was constructed to markedly enhance the activity and selectivity via introducing Sn atoms into the surface of defective cerium oxide(denoted as Sn-CeO_(2-x)) as the active and robust electrocatalyst for NRR under benign environment.The introduction of Sn atoms in CeO_(2-x)can not only inhibit the HER activity of the catalyst but also modulate the electronic structure of ceria and optimize N-Ce interaction,thus enhancing NRR activity and selectivity.Outperforming all previous CeO_(2)-based NRR catalysts,this catalyst has demonstrated an ammonia yield rate of 41.1 μg mg_(cat)^(-1) h^(-1) and an exceptional Faradic efficiency of 35.3%.This work presents a viable approach for the development of advanced NRR electrocatalysts.
基金the Graduate Student Research Innovation Project of Chongqing(No.CYB22016)National Natural Science Foundation of China(Nos.52237010,52277135,51907011)。
文摘The surface charge accumulation on polymers often leads to surface flashover.Current solutions are mainly based on the introduction of inorganic fillers.The high-cost process and low compatibility remain formidable challenges.Moreover,existing researches on all-organic insulation focus on capturing electrons,contrary to alleviating charge accumulation.Here,an all-organic modification coating was prepared on polystyrene(PS)with the large-scale atmospheric-pressure plasma,which exhibits outperformed function in mitigating surface charge accumulation.The surface charge dissipation rate and surface conductivity are promoted by about 1.37 and 9.45 times,respectively.Simulation and experimental results show that this all-organic modification coating has a smaller electron affinity potential compared with PS.The decrease of electron affinity potential may result in accelerated surface charge decay of PS,which has never been involved in previous works.Moreover,this coating also has good reliability in a repeated surface flashover.This facile and large-scale approach brings up a novel idea for surface charge regulation and the manufacture of advanced dielectric polymers.
基金supported by National Natural Science Foundation of China (Nos. 52037004, 51777091 and52250410350)Postgraduate Research&Practice Innovation Program of Jiangsu Province (No.KYCX22_1314)。
文摘The nanosecond(ns) pulsed nitrogen dielectric barrier discharge(DBD) is employed to enhance the hydrophilicity of polypropylene(PP) surface and improve its application effect.The discharge characteristics of the ns pulsed nitrogen DBD with different pulse rise times(from 50to 500 ns) are investigated by electrical and optical diagnostic methods and the discharge uniformity is quantitatively analyzed by image processing method.To characterize the surface hydrophilicity,the water contact angle(WCA) is measured,and the physical morphology and chemical composition of PP before and after modification are analyzed to explore the effect of plasma on PP surface.It is found that with increasing pulse rise time from 50 to 500 ns,DBD uniformity becomes worse,energy efficiency decreases from 20% to 10.8%,and electron density decrease from 6.6 × 10^(11)to 5.5 × 10^(11)cm^(-3).The tendency of electron temperature is characterized with the intensity ratio of N_(2)/N_(2)^(+)emission spectrum,which decreases from 17.4 to15.9 indicating the decreasing of T_(e) with increasing pulse rise time from 50 to 500 ns.The PP surface treated with 50 ns pulse rise time DBD has a lower WCA(~47°),while the WCA of PP treated with 100 to 500 ns pulse rise time DBD expands gradually(~50°–57°).According to the study of the fixed-point WCA values,the DBD-treated PP surface has superior uniformity under50 ns pulse rise time(3° variation) than under 300 ns pulse rise time(8° variation).After DBD treatment,the increased surface roughness from 2.0 to 9.8 nm and hydrophilic oxygencontaining groups on the surface,i.e.hydroxyl(-OH) and carbonyl(C=O) have played the significant role to improve the sample’s surface hydrophilicity.The short pulse voltage rise time enhances the reduced electric field strength(E/n) in the discharge space and improves the discharge uniformity,which makes relatively sufficient physical and chemical reactions have taken place on the PP surface,resulting in better treatment uniformity.
基金supported by the Chung-Ang University Research Grants in 2021the National Research Foundation(NRF)of Korea(No.2020R1G1A1102692)。
文摘Indium gallium tin oxide(IGTO)thin films have the potential for high mobility and lowtemperature processing,which makes them suitable for applications such as display backplanes and high-voltage switching devices.However,very few studies have investigated the plasmaetching characteristics of IGTO and changes in its properties after etching.In this study,the etching characteristics of IGTO were investigated using Cl_(2)/Ar plasma,and changes in surface properties were analyzed.Results showed that the etch rate increased with an increase in the proportion of Cl_(2),with the highest etch rate observed at 69 nm min^(-1)in pure Cl_(2)plasma with a gas flow rate of 100 sccm.Furthermore,increased radio-frequency power caused a rise in the etch rate,while a process pressure of 15 m Torr was optimal.The primary etching mechanism for IGTO thin films under Cl_(2)plasma was a chemical reaction,and an increased work function indicated the occurrence of defects on the surface.In addition,the etching process reduced the surface roughness of Cl_(2)-containing plasma,whereas the etching process in pure Ar plasma increased surface roughness.This study contributes to a better understanding of the plasmaetching characteristics of IGTO and changes in its properties after etching,providing valuable insights for IGTO-based applications.
基金supported by the National High Level Hospital Clinical Research Funding:2022-PUMCH-A-191.
文摘As the number of patients suffering from cardiovascular diseases and peripheral vascular diseases rises,the constraints of autologous transplantation remain unavoidable.As a result,artificial vascular grafts must be developed.Adhesion of proteins,platelets and bacteria on implants can result in stenosis,thrombus formation,and postoperative infection,which can be fatal for an implantation.Polyurethane,as a commonly used biomaterial,has been modified in various ways to deal with the adhesions of proteins,platelets,and bacteria and to stimulate endothelium adhesion.In this review,we briefly summarize the mechanisms behind adhesions,overview the current strategies of surface modifications of polyurethane biomaterials used in vascular grafts,and highlight the challenges that need to be addressed in future studies,aiming to gain a more profound understanding of how to develop artificial polyurethane vascular grafts with an enhanced implantation success rate and reduced side effect.
文摘Ultra-high molecular weight polyethylene(UHMWPE)fiber is a new kind of high-performance fiber.Due to its excellent physical and chemical characteristics,it is widely used in various fields.However,the surface UHMWPE fiber is smooth and demonstrates no-polar groups.The weak interfacial adhesion between fiber and resin seri-ously restricts the applications of UHMWPE fiber.Therefore,the surface modification treatments of UHMWPE fiber are used to improve the interfacial adhesion strength.The modified method by adding nanomaterials elu-cidates the easy fabrication,advanced equipment and proper technology.Thus,the progress of UHMWPE nanocomposite fibers prepared via adding various nanofillers are reviewed.Meanwhile,the effects of other various methods on surface modification are also reviewed.This work advances the various design strategies about nano technologies on improving interfacial adhesion performance via treatment methodologies.
基金Funded by Changsha Natural Science Foundation(No.kq2208270)。
文摘We review the fundamental properties and significant issues related to Cu/graphite composites.In particular,recent research on the interfacial modification of Cu/graphite composites is addressed,including the metal-modified layer,carbide-modified layer,and combined modified layer.Additionally,we propose the use of ternary layered carbide as an interface modification layer for Cu/graphite composites.
文摘Rising concerns about climate change drive the demand for lightweight components.Magnesium(Mg)alloys are highly valued for their low weight,making them increasingly important in various industries.Researchers focusing on enhancing the characteristics of Mg alloys and developing their Metal Matrix Composites(MMCs)have gained significant attention worldwide over the past decade,driven by the global shift towards lightweight materials.Friction Stir Processing(FSP)has emerged as a promising technique to enhance the properties of Mg alloys and produce Mg-MMCs.Initially,FSP adapted to refine grain size from the micro to the nano level and accelerated the development of MMCs due to its solid-state nature and the synergistic effects of microstructure refinement and reinforcement,improving strength,hardness,ductility,wear resistance,corrosion resistance,and fatigue strength.However,producing defect-free and sound FSPed Mg and Mg-MMCs requires addressing several variables and their interdependencies,which opens up a broad range of practical applications.Despite existing reviews on individual FSP of Mg,its alloys,and MMCs,an attempt has been made to analyze the latest research on these three aspects collectively to enhance the understanding,application,and effectiveness of FSP for Mg and its derivatives.This review article discusses the literature,classifies the importance of Mg alloys,provides a historical background,and explores developments and potential applications of FSPed Mg alloys.It focuses on novel fabrication methods,reinforcement strategies,machine and tool design parameters,material characterization,and integration with other methods for enhanced properties.The influence of process parameters and the emergence of defects are examined,along with specific applications in mono and hybrid composites and their microstructure evolution.The study identifies promising reinforcement materials and highlights research gaps in FSP for Mg alloys and MMCs production.It concludes with significant recommendations for further exploration,reflecting ongoing advancements in this field.
基金the financial support provided by the National Natural Science Foundation of China(No.52274369)the Science and Technology Program of Hunan Province,China(No.2020GK2044)。
文摘The thermal conductivity of Cu/Kovar composites was improved by suppressing element diffusion at the interfaces through the formation of FeWO_(4)coating on the Kovar particles via vacuum deposition.Cu matrix composites reinforced with unmodified(Cu/Kovar)and modified Kovar(Cu/Kovar@)particles were prepared by hot pressing.The results demonstrate that the interfaces of Cu/FeWO_(4)and FeWO_(4)/Kovar in the Cu/Kovar@composites exhibit strong bonding,and no secondary phase is generated.The presence of FeWO_(4)impedes interfacial diffusion within the composite,resulting in an increase in grain size and a decrease in dislocation density.After surface modification of the Kovar particle,the thermal conductivity of Cu/Kovar@composite is increased by 110%from 40.6 to 85.6 W·m^(-1)·K^(-1).Moreover,the thermal expansion coefficient of the Cu/Kovar@composite is 9.8×10^(-6)K^(-1),meeting the electronic packaging requirements.