The size-dependent nonlinear buckling and postbuckling characteristics of circular cylindrical nanoshells subjected to the axial compressive load are investigated with an analytical approach. The surface energy effect...The size-dependent nonlinear buckling and postbuckling characteristics of circular cylindrical nanoshells subjected to the axial compressive load are investigated with an analytical approach. The surface energy effects are taken into account according to the surface elasticity theory of Gurtin and Murdoch. The developed geometrically nonlinear shell model is based on the classical Donnell shell theory and the von Karman's hypothesis. With the numerical results, the effect of the surface stress on the nonlinear buckling and postbuckling behaviors of nanoshells made of Si and Al is studied. Moreover, the influence of the surface residual tension and the radius-to-thickness ratio is illustrated. The results indicate that the surface stress has an important effect on prebuckling and postbuekling characteristics of nanoshells with small sizes.展开更多
In this study, we introduce a system of differential equations describing the motion of a single point mass or of two interacting point masses on a surface, that is solved by a fourth-order explicit Runge–Kutta(RK4) ...In this study, we introduce a system of differential equations describing the motion of a single point mass or of two interacting point masses on a surface, that is solved by a fourth-order explicit Runge–Kutta(RK4) scheme. The forces acting on the masses are gravity, the reaction force of the surface, friction, and, in case of two masses, their mutual interaction force. This latter is introduced by imposing that the geometrical distance between the coupled masses is constant. The solution is computed under the assumption that the point masses strictly slide on the surface, without leaping or rolling. To avoid complications stemming from numerical errors related to real topographies that are only known over discrete grids, we restrict our attention to simulations on analytical continuous surfaces. This study sets the basis for a generalization to more complex systems of masses, such as chains or matrices of blocks that are often used to model complex processes such as landslides and rockfalls. The results shown in this paper provide a background for a companion paper in which the system of equations is generalized, and different geometries are presented.展开更多
A full-dimensional analytical potential energy surface (APES) for the F + CH4 →HF + CH3 reaction is developed based on 7127 ab initio energy points at the unrestricted coupled-cluster with single, double, and per...A full-dimensional analytical potential energy surface (APES) for the F + CH4 →HF + CH3 reaction is developed based on 7127 ab initio energy points at the unrestricted coupled-cluster with single, double, and perturbative triple excitations. The correlation-consistent polarized triple-split valence basis set is used. The APES is represented with a many-body expansion containing 239 parameters determined by the least square fitting method. The two-body terms of the APES are fitted by potential energy curves with multi-reference configuration interaction, which can describe the diatomic molecules (CH, H2, HF, and CF) accurately. It is found that the APES can reproduce the geometry and vibrational frequencies of the saddle point better than those available in the literature. The rate constants based on the present APES support the experimental results of Moore et al. [Int. J. Chem. Kin. 26, 813 (1994)]. The analytical first-order derivation of energy is also provided, making the present APES convenient and efficient for investigating the title reaction with quasiclassical trajectory calculations.展开更多
In this paper, the analytical solution of a viscous and incompressible fluid towards an exponentially stretching porous sheet with surface heat flux in porous medium, for the boundary layer and heat transfer flow, is ...In this paper, the analytical solution of a viscous and incompressible fluid towards an exponentially stretching porous sheet with surface heat flux in porous medium, for the boundary layer and heat transfer flow, is presented. The equations of continuity, momentum and the energy are transformed into non-linear ordinary differential by using similarity transformation. The solutions of these highly non-linear ordinary differential equations are found analytically by means of Homotopy Analysis Method (HAM). The result obtained by HAM is compared with numerical results presented in the literature. The accuracy of the HAM is indicated by close agreement of the two sets of results. By this method, an expression is obtained which is admissible for all values of effective parameters. This method has the ability to control the convergence of the solution.展开更多
The present paper is concerned with the steady thin film flow of the Sisko fluid on a horizontal moving plate, where the surface tension gradient is a driving mechanism. The analytic solution for the resulting nonline...The present paper is concerned with the steady thin film flow of the Sisko fluid on a horizontal moving plate, where the surface tension gradient is a driving mechanism. The analytic solution for the resulting nonlinear ordinary differential equation is obtained by the Adomian decomposition method (ADM). The physical quantities are derived including the pressure profile, the velocity profile, the maximum residue time, the stationary points, the volume flow rate, the average film velocity, the uniform film thickness, the shear stress, the surface tension profile~ and the vorticity vector. It is found that the velocity of the Sisko fluid film decreases when the fluid behavior index and the Sisko fluid parameter increase, whereas it increases with an increase in the inverse capillary number. An increase in the inverse capillary number results in an increase in the surface tension which in turn results in an increase in the surface tension gradient on the Sisko fluid film. The locations of the stationary points are shifted towards the moving plate with the increase in the inverse capillary number, and vice versa locations for the stationary points are found with the increasing Sisko fluid parameter. Furthermore, shear thinning and shear thickening characteristics of the Sisko fluid are discussed. A comparison is made between the Sisko fluid film and the Newtonian fluid film.展开更多
The modified analytic embedded-atom method and molecular dynamics simulations are applied to the investigation of the surface premelting and melting behaviours of the V(110) plane by calculating the interlayer relax...The modified analytic embedded-atom method and molecular dynamics simulations are applied to the investigation of the surface premelting and melting behaviours of the V(110) plane by calculating the interlayer relaxation, the layer structure factor and atomic snapshots in this paper. The results obtained indicate that the premelting phenomenon occurs on the V(110) surface at about 1800K and then a liquid-like layer, which approximately keeps the same thickness up to 2020K, emerges on it. We discover that the temperature 2020K the V(110) surface starts to melt and is in a completely disordered state at the temperature of 2140K under the melting point for the bulk vanadium.展开更多
Spatio-temporal variation in the Martian surface temperature(MST)is an indicator of ground level thermal processes and hence a building block for climate models.However,the distribution of MST exhibits different level...Spatio-temporal variation in the Martian surface temperature(MST)is an indicator of ground level thermal processes and hence a building block for climate models.However,the distribution of MST exhibits different levels of spatial aggregation or heterogeneity,and varies in space and time.Furthermore,the effect of regional differences in meteorological or environmental factors on the MST is not well understood.Thus,we investigated the degree of spatial autocorrelation of MST across the surface of Mars globally by Moran’s I,and identified the hot spots by GetisOrd G;*.We also estimated the regional differences in the influence of seasonally dominant factors including thermal inertia(TI),albedo,surface pressure,latitude,dust and slope on MST by a geographically weighted regression model.The results indicate(1)that MST is spatially aggregated and hot and cold spots varied over time and space.(2)Hemispheric differences in topography,surface TI and albedo were primarily responsible for the hemispheric asymmetry of hot spots.(3)The dominant factors varied by geographical locations and seasons.For example,the seasonal Hadley circulation dominates at the low-latitudes and CO;circulation at the high-latitudes.(4)Regions with extreme variations in topography and low TI were sensitive to meteorological and environmental factors such as dust and CO_(2)ice.We conclude that the spatial autocorrelation of MST and the spatial and seasonal heterogeneity of influencing factors must be considered when simulating Martian climate models.This work provides a reference for further exploration of Martian climatic processes.展开更多
The aggregation ofα-synuclein(α-syn)is strongly influenced by membrane interfaces,but the mechanism of transition from monomers to oligomers at early aggregation stage is not clear.Here,we investigate the adsorption...The aggregation ofα-synuclein(α-syn)is strongly influenced by membrane interfaces,but the mechanism of transition from monomers to oligomers at early aggregation stage is not clear.Here,we investigate the adsorption and structure changes ofα-syn on oppositely charged aromatic interfaces through in-situ surface-enhanced infrared absorption(SEIRA)spectroscopy and nano-IR technique.The results show that the synergy of electrostatic and hydrophobic interactions leads to a“fast-slow”two-step aggregation pathway on negatively charged interface.Surface adsorption induces the formation of an extended helix structure and subsequently partial helix unwinding in NAC region,which enables the hydrophobic stacking between nearby NAC regions.Stable antiparallel β-sheet rich aggregates are gradually emerging as further interactions of monomers with the fast formed“first layer”.Monomers electrostatically adsorb on positively charged interface by C-terminus with NAC region and N-terminus stretched in solvent,which serve as an aggregation core and induce further adsorption and gradual formation of aggregates with C-terminus exposure.Our results demonstrate the modulation of surface charge and synergy of electrostatic and hydrophobic interactions on the interaction modes and aggregation pathways,which provide insights into dynamic conformation changes ofα-syn at early aggregation stage and imply the important role of spatial-temporal heterogeneity of membranes inα-synucleinopathies.展开更多
声学黑洞(Acoustic Black Hole,ABH)对弯曲波的聚集效应具有宽频、高效、实现方法简单灵活等特点,在结构减振降噪领域具有广泛的应用前景。以一维声学黑洞梁为对象,结合声学黑洞半解析建模计算方法和响应面优化方法,分析声学黑洞特征长...声学黑洞(Acoustic Black Hole,ABH)对弯曲波的聚集效应具有宽频、高效、实现方法简单灵活等特点,在结构减振降噪领域具有广泛的应用前景。以一维声学黑洞梁为对象,结合声学黑洞半解析建模计算方法和响应面优化方法,分析声学黑洞特征长度、截断厚度、幂律以及阻尼层特征长度和厚度这5个参数对一维声学黑洞梁减振效果的影响规律。以一维声学黑洞梁的减振效果为优化目标,对梁和阻尼的结构参数进行优化设计,优化后的一维声学黑洞梁结构在10~8000Hz频率范围内的平均加速度级降低19.03dB。研究对一维声学黑洞梁结构在减振领域的工程应用具有参考价值。展开更多
文摘The size-dependent nonlinear buckling and postbuckling characteristics of circular cylindrical nanoshells subjected to the axial compressive load are investigated with an analytical approach. The surface energy effects are taken into account according to the surface elasticity theory of Gurtin and Murdoch. The developed geometrically nonlinear shell model is based on the classical Donnell shell theory and the von Karman's hypothesis. With the numerical results, the effect of the surface stress on the nonlinear buckling and postbuckling behaviors of nanoshells made of Si and Al is studied. Moreover, the influence of the surface residual tension and the radius-to-thickness ratio is illustrated. The results indicate that the surface stress has an important effect on prebuckling and postbuekling characteristics of nanoshells with small sizes.
基金mostly financed by the FP7 Project ASTARTE "Assessment,Strategy and Risk Reduction for 740 Tsunamis in Europe"(FP7-ENV2013 6.4-3,Grant603839)the Italian National Project RITMARE that,among others,treat landslide models with tsunamigenic potential
文摘In this study, we introduce a system of differential equations describing the motion of a single point mass or of two interacting point masses on a surface, that is solved by a fourth-order explicit Runge–Kutta(RK4) scheme. The forces acting on the masses are gravity, the reaction force of the surface, friction, and, in case of two masses, their mutual interaction force. This latter is introduced by imposing that the geometrical distance between the coupled masses is constant. The solution is computed under the assumption that the point masses strictly slide on the surface, without leaping or rolling. To avoid complications stemming from numerical errors related to real topographies that are only known over discrete grids, we restrict our attention to simulations on analytical continuous surfaces. This study sets the basis for a generalization to more complex systems of masses, such as chains or matrices of blocks that are often used to model complex processes such as landslides and rockfalls. The results shown in this paper provide a background for a companion paper in which the system of equations is generalized, and different geometries are presented.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11174117 and 10974078)
文摘A full-dimensional analytical potential energy surface (APES) for the F + CH4 →HF + CH3 reaction is developed based on 7127 ab initio energy points at the unrestricted coupled-cluster with single, double, and perturbative triple excitations. The correlation-consistent polarized triple-split valence basis set is used. The APES is represented with a many-body expansion containing 239 parameters determined by the least square fitting method. The two-body terms of the APES are fitted by potential energy curves with multi-reference configuration interaction, which can describe the diatomic molecules (CH, H2, HF, and CF) accurately. It is found that the APES can reproduce the geometry and vibrational frequencies of the saddle point better than those available in the literature. The rate constants based on the present APES support the experimental results of Moore et al. [Int. J. Chem. Kin. 26, 813 (1994)]. The analytical first-order derivation of energy is also provided, making the present APES convenient and efficient for investigating the title reaction with quasiclassical trajectory calculations.
文摘In this paper, the analytical solution of a viscous and incompressible fluid towards an exponentially stretching porous sheet with surface heat flux in porous medium, for the boundary layer and heat transfer flow, is presented. The equations of continuity, momentum and the energy are transformed into non-linear ordinary differential by using similarity transformation. The solutions of these highly non-linear ordinary differential equations are found analytically by means of Homotopy Analysis Method (HAM). The result obtained by HAM is compared with numerical results presented in the literature. The accuracy of the HAM is indicated by close agreement of the two sets of results. By this method, an expression is obtained which is admissible for all values of effective parameters. This method has the ability to control the convergence of the solution.
文摘The present paper is concerned with the steady thin film flow of the Sisko fluid on a horizontal moving plate, where the surface tension gradient is a driving mechanism. The analytic solution for the resulting nonlinear ordinary differential equation is obtained by the Adomian decomposition method (ADM). The physical quantities are derived including the pressure profile, the velocity profile, the maximum residue time, the stationary points, the volume flow rate, the average film velocity, the uniform film thickness, the shear stress, the surface tension profile~ and the vorticity vector. It is found that the velocity of the Sisko fluid film decreases when the fluid behavior index and the Sisko fluid parameter increase, whereas it increases with an increase in the inverse capillary number. An increase in the inverse capillary number results in an increase in the surface tension which in turn results in an increase in the surface tension gradient on the Sisko fluid film. The locations of the stationary points are shifted towards the moving plate with the increase in the inverse capillary number, and vice versa locations for the stationary points are found with the increasing Sisko fluid parameter. Furthermore, shear thinning and shear thickening characteristics of the Sisko fluid are discussed. A comparison is made between the Sisko fluid film and the Newtonian fluid film.
基金supported by the National Natural Science Foundation of China (Grant No 50671035)the Scientific Research Fund of Hunan Provincial Education Department of China (Grant No 07C445)the Grant of the 11th Five-year Plan for Key Construction Academic Subject of Hunan Province,China
文摘The modified analytic embedded-atom method and molecular dynamics simulations are applied to the investigation of the surface premelting and melting behaviours of the V(110) plane by calculating the interlayer relaxation, the layer structure factor and atomic snapshots in this paper. The results obtained indicate that the premelting phenomenon occurs on the V(110) surface at about 1800K and then a liquid-like layer, which approximately keeps the same thickness up to 2020K, emerges on it. We discover that the temperature 2020K the V(110) surface starts to melt and is in a completely disordered state at the temperature of 2140K under the melting point for the bulk vanadium.
基金supported by the pre-research Project on Civil Aerospace Technologies(No.D020103)supported by the National Natural Science Foundation of China(Grant No.42030110)。
文摘Spatio-temporal variation in the Martian surface temperature(MST)is an indicator of ground level thermal processes and hence a building block for climate models.However,the distribution of MST exhibits different levels of spatial aggregation or heterogeneity,and varies in space and time.Furthermore,the effect of regional differences in meteorological or environmental factors on the MST is not well understood.Thus,we investigated the degree of spatial autocorrelation of MST across the surface of Mars globally by Moran’s I,and identified the hot spots by GetisOrd G;*.We also estimated the regional differences in the influence of seasonally dominant factors including thermal inertia(TI),albedo,surface pressure,latitude,dust and slope on MST by a geographically weighted regression model.The results indicate(1)that MST is spatially aggregated and hot and cold spots varied over time and space.(2)Hemispheric differences in topography,surface TI and albedo were primarily responsible for the hemispheric asymmetry of hot spots.(3)The dominant factors varied by geographical locations and seasons.For example,the seasonal Hadley circulation dominates at the low-latitudes and CO;circulation at the high-latitudes.(4)Regions with extreme variations in topography and low TI were sensitive to meteorological and environmental factors such as dust and CO_(2)ice.We conclude that the spatial autocorrelation of MST and the spatial and seasonal heterogeneity of influencing factors must be considered when simulating Martian climate models.This work provides a reference for further exploration of Martian climatic processes.
基金financial support from National Key R&D Program of China(2022YFE0113000)the National Natural Science Foundation of China(22074138,22374083)+1 种基金the National Science Fund for Distinguished Young Scholars(22025406)Youth Innovation Promotion Association of CAs(Grant No.2020233).
文摘The aggregation ofα-synuclein(α-syn)is strongly influenced by membrane interfaces,but the mechanism of transition from monomers to oligomers at early aggregation stage is not clear.Here,we investigate the adsorption and structure changes ofα-syn on oppositely charged aromatic interfaces through in-situ surface-enhanced infrared absorption(SEIRA)spectroscopy and nano-IR technique.The results show that the synergy of electrostatic and hydrophobic interactions leads to a“fast-slow”two-step aggregation pathway on negatively charged interface.Surface adsorption induces the formation of an extended helix structure and subsequently partial helix unwinding in NAC region,which enables the hydrophobic stacking between nearby NAC regions.Stable antiparallel β-sheet rich aggregates are gradually emerging as further interactions of monomers with the fast formed“first layer”.Monomers electrostatically adsorb on positively charged interface by C-terminus with NAC region and N-terminus stretched in solvent,which serve as an aggregation core and induce further adsorption and gradual formation of aggregates with C-terminus exposure.Our results demonstrate the modulation of surface charge and synergy of electrostatic and hydrophobic interactions on the interaction modes and aggregation pathways,which provide insights into dynamic conformation changes ofα-syn at early aggregation stage and imply the important role of spatial-temporal heterogeneity of membranes inα-synucleinopathies.
文摘声学黑洞(Acoustic Black Hole,ABH)对弯曲波的聚集效应具有宽频、高效、实现方法简单灵活等特点,在结构减振降噪领域具有广泛的应用前景。以一维声学黑洞梁为对象,结合声学黑洞半解析建模计算方法和响应面优化方法,分析声学黑洞特征长度、截断厚度、幂律以及阻尼层特征长度和厚度这5个参数对一维声学黑洞梁减振效果的影响规律。以一维声学黑洞梁的减振效果为优化目标,对梁和阻尼的结构参数进行优化设计,优化后的一维声学黑洞梁结构在10~8000Hz频率范围内的平均加速度级降低19.03dB。研究对一维声学黑洞梁结构在减振领域的工程应用具有参考价值。