期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Classification of surface EMG signal with fractal dimension
1
作者 胡晓 王志中 任小梅 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第8期844-848,共5页
Surface EMG (electromyography) signal is a complex nonlinear signal with low signal to noise ratio (SNR). This paper is aimed at identifying different patterns of surface EMG signals according to fractal dimension. Tw... Surface EMG (electromyography) signal is a complex nonlinear signal with low signal to noise ratio (SNR). This paper is aimed at identifying different patterns of surface EMG signals according to fractal dimension. Two patterns of surface EMG signals are respectively acquired from the right forearm flexor of 30 healthy volunteers during right forearm supination (FS) or forearm pronation (FP). After the high frequency noise is filtered from surface EMG signal by a low-pass filter, fractal di-mension is calculated from the filtered surface EMG signal. The results showed that the fractal dimensions of filtered FS surface EMG signals and those of filtered FP surface EMG signals distribute in two different regions, so the fractal dimensions can rep-resent different patterns of surface EMG signals. 展开更多
关键词 surface emg signal Fractal dimension Correlation dimension SELF-SIMILARITY GP algorithm
下载PDF
The Change of Spectral Energy Distribution of Surface EMG Signal During Forearm Action Process
2
作者 HU Xiao LI Li WANG Zhi-zhong 《Chinese Journal of Biomedical Engineering(English Edition)》 2007年第2期55-65,共11页
Spectral energy distribution of surface EMG signal is often used but difficultly and effectively control artificial limb, because the spectral energy distribution changes in the process of limb actions. In this paper,... Spectral energy distribution of surface EMG signal is often used but difficultly and effectively control artificial limb, because the spectral energy distribution changes in the process of limb actions. In this paper, the general characteristics of surface EMG signal patterns were firstly characterized by spectral energy change. 13 healthy subjects were instructed to execute forearm supination (FS) and forearm pronation (FP) with their right foreanns when their forearm muscles were "fatigue" or "relaxed". All surface EMG signals were recorded from their right forearm flexor during their right forearm actions. Two sets of surface EMG signals were segmented from every surface EMG signal appropriately at preparing stage and acting stage. Relative wavelet packet energy (symbolized by pnp and pna respectively at preparing stage and acting stage, n denotes the nth frequency band) of surface EMG signal firstly was calculated and then, the difference (Pn = Pna-Pnp) were gained. The results showed that Pn from some frequency bands can effectively characterize the general characteristics of surface EMG signal patterns. Compared with Pn in other frequency bands, P4, the spectral energy change from 93.75 to 125 Hz, was more appropriately regarded as the features. 展开更多
关键词 surface emg signal relative wavelet packet energy motor unit action potential Bayes decision
下载PDF
Characterization of surface EMG signals using improved approximate entropy 被引量:3
3
作者 CHEN Wei-ting WANG Zhi-zhong REN Xiao-mei 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2006年第10期844-848,共5页
An improved approximate entropy (ApEn) is presented and applied to characterize surface electromyography (sEMG) signals. In most previous experiments using nonlinear dynamic analysis, this certain processing was often... An improved approximate entropy (ApEn) is presented and applied to characterize surface electromyography (sEMG) signals. In most previous experiments using nonlinear dynamic analysis, this certain processing was often confronted with the problem of insufficient data points and noisy circumstances, which led to unsatisfactory results. Compared with fractal dimension as well as the standard ApEn, the improved ApEn can extract information underlying sEMG signals more efficiently and accu- rately. The method introduced here can also be applied to other medium-sized and noisy physiological signals. 展开更多
关键词 surface emg (semg signal Nonlinear analysis Approximate entropy (ApEn) Fractal dimension
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部