期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Surface Active Sites on Co_(3)O_(4) Nanobelt and Nanocube Model Catalysts for CO Oxidation 被引量:21
1
作者 Linhua Hu Keqiang Sun +2 位作者 Qing Peng Boqing Xu Yadong Li 《Nano Research》 SCIE EI CSCD 2010年第5期363-368,共6页
CO oxidation has been performed on Co_(3)O_(4) nanobelts and nanocubes as model catalysts.The Co_(3)O_(4) nanobelts which have a predominance of exposed{011}planes are more active than Co_(3)O_(4) nanocubes with expos... CO oxidation has been performed on Co_(3)O_(4) nanobelts and nanocubes as model catalysts.The Co_(3)O_(4) nanobelts which have a predominance of exposed{011}planes are more active than Co_(3)O_(4) nanocubes with exposed{001}planes.Temperature programmed reduction of CO shows that Co_(3)O_(4) nanobelts have stronger reducing properties than Co_(3)O_(4) nanocubes.The essence of shape and crystal plane effect is revealed by the fact that turnover frequency of Co3+sites of{011}planes on Co_(3)O_(4) nanobelts is far higher than that of{001}planes on Co_(3)O_(4) nanocubes. 展开更多
关键词 CO oxidation Co_(3)O_(4) surface active sites turnover frequency model catalyst
原文传递
High-density/efficient surface active sites on modified separators to boost Li-S batteries via atomic Co^(3+)-Se termination 被引量:3
2
作者 Shujie Liu Xiaofei Liu +11 位作者 Manfang Chen Dong Wang Xin Ge Wei Zhang Xiyang Wang Chunhui Wang Tingting Qin Haozhe Qin Liang Qiao Dan Zhang Xing Ou Weitao Zheng 《Nano Research》 SCIE EI CSCD 2022年第8期7199-7208,共10页
Various and critical electrocatalytic processes are involved during the redox reactions in the Li-S batteries,which extremely depend on the surface structure and chemical state.Recently,single-atom concept unlocks a r... Various and critical electrocatalytic processes are involved during the redox reactions in the Li-S batteries,which extremely depend on the surface structure and chemical state.Recently,single-atom concept unlocks a route to maximize the use of surface-active atoms,however,further increasing the density of active site is still strictly limited by the inherent structure that single-atoms are only highly-dispersed on substrate.Herein,we provide a viewpoint that an elaborate facet design with singlecrystalline structure engineering can harvest high-density surface active sites,which can significantly boost the electrocatalyst performance for excellent Li-S batteries.Specifically,the single-crystal CoSe_(2)(scCS)exhibits three-types of terminated(011)facet,efficiently obtaining the surface with a high-rich Co^(3+)–Se bond termination,in contrast with lots of surface grain boundaries and dangling bonds in polycrystalline CoSe_(2).Surprisingly,the surface active sites concentration can reach more than 69%.As anticipated,it can provide high-density and high-efficient active sites,enormously suppressing the shuttle effect and improving the reaction kinetics via accelerating the conversion and deposition of polysulfides and Li2S.This surface lattice strategy with element terminated mode is a promising approach for designing electrocatalyst effect-based energy system,not merely for Li-S batteries. 展开更多
关键词 high-density surface active sites Co^(3+)-Se covalent bond atomic element terminated Li-S batteries single-crystalline strategy
原文传递
Experimental Study on the Dependency of Ice Nucleation Active Surface Site Density on ATD Aerosol Size
3
作者 Franco Belosi Gianni Santachiara 《Atmospheric and Climate Sciences》 2021年第3期426-440,共15页
In light of the percentage of Earth’s cloud coverage, heterogeneous ice nucleation in clouds is the most important global-scale pathway. More recent parameterizations of ice nucleation processes in the atmosphere are... In light of the percentage of Earth’s cloud coverage, heterogeneous ice nucleation in clouds is the most important global-scale pathway. More recent parameterizations of ice nucleation processes in the atmosphere are based on the concept of ice nucleation active surface site density (<i><span style="font-family:Verdana;">n</span><sub><span style="font-family:Verdana;">s</span></sub></i><span style="font-family:Verdana;">). It is usually assumed that </span><i><span style="font-family:Verdana;">n</span><sub><span style="font-family:Verdana;">s</span></sub></i><span style="font-family:Verdana;"> is independent of time and aerosol size distribution, </span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;"> that the surface properties of aerosols of the same species do not vary with size. However, the independence of </span><i><span style="font-family:Verdana;">n</span><sub><span style="font-family:Verdana;">s</span></sub></i><span style="font-family:Verdana;"> on aerosol size for every species has been questioned. This study presents the results of ice nucleation processes of ATD laboratory-generated aerosol (particle diameters of 0 - 3 μm). Ice nucleation in the condensation mode was performed in a Dynamic Filter Processing Cham- ber at temperatures of </span><span style="font-family:;" "=""><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">&#45;</span></span><span style="font-family:Verdana;">18<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">&#176;</span>C and </span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">&#45;</span></span><span><span style="font-family:Verdana;">22<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">&#176;</span>C, with a saturation ratio with respect to water of 1.02. Results show that </span><i><span style="font-family:Verdana;">n</span><sub><span style="font-family:Verdana;">s</span></sub></i><span style="font-family:Verdana;"> increased by lowering the nucleation temperature, and was also dependent on the particle size. The </span><i><span style="font-family:Verdana;">n</span><sub><span style="font-family:Verdana;">s</span></sub></i><span style="font-family:Verdana;"> of particles collected on the filters, after a 0.5 μm D</span><sub><span style="font-family:Verdana;">50</span></sub><span style="font-family:Verdana;"> cut-off cyclone, resulted statistically higher with respect to the values obtained from the particles collected on total filters. The results obtained suggest the need for further investigation of </span><i><span style="font-family:Verdana;">n</span></i><sub><span style="font-family:Verdana;">s</span></sub><span style="font-family:Verdana;"> dependence of same composition aerosol particles with a view to support weather and climate predictions.</span></span></span> 展开更多
关键词 Ice Activated Fraction Ice Nucleation active surface site Density Condensation Freezing
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部