The electromagnetic surface antenna array(EMSAA)has been proposed for obtaining reflection suppression and excellent radiation simultaneously.The antenna with rectangular radiation patch is used to design anisotropic ...The electromagnetic surface antenna array(EMSAA)has been proposed for obtaining reflection suppression and excellent radiation simultaneously.The antenna with rectangular radiation patch is used to design anisotropic electromagnetic surface.Preternatural reflection characteristics of the element antenna can be tailored depending on the incident polarizations.EMSAA can be constructed by using single structured element antenna with 90° rotation and orthometric arrangement.This orthometric arrangement of EMSAA is helpful to achieve reflection suppression and excellent radiation.The simulated results show that the reflection of EMSAA is suppressed from 5.0 GHz to 8.0 GHz with peak reduction of 12.3 dB.The linear-and circular-polarized radiation properties of EMSAA are obtained and the maximum gain is 14.3 dBi.The measured results are consistent with the simulation results.The results demonstrate that the reflection suppression and excellent radiation are achieved simultaneously.Such design of EMSAA will open the path for integrating antenna fields and electromagnetic surface(EMS)fields.展开更多
A three-dimensional electrical-thermal coupling model based on the finite element method is applied to study thermal properties of implant-defined vertical cavity surface emitting laser (VCSEL) arrays. Several param...A three-dimensional electrical-thermal coupling model based on the finite element method is applied to study thermal properties of implant-defined vertical cavity surface emitting laser (VCSEL) arrays. Several parameters including inter-element spacing, scales, injected current density and substrate temperature are considered. The actual temperatures obtained through experiment are in excellent agreement with the calculated results, which proves the accuracy of the model. Due to the serious thermal problem, it is essential to design arrays of low self-heating. The analysis can provide a foundation for designing VCSEL arrays in the future.展开更多
As a kind of natural fiber,ramie fiber has distinctive advantages in textile application,but the application is limited due to the traditional degumming mode.Compared with the traditional degumming process,the microbi...As a kind of natural fiber,ramie fiber has distinctive advantages in textile application,but the application is limited due to the traditional degumming mode.Compared with the traditional degumming process,the microbial degumming process has many advantages.To obtain the optimal conditions for degumming ramie with Bacillus subtilis DZ_(5)(BS DZ_(5)),a combined statistical approach of orthogonal array design(OAD)and response surface methodology(RSM)was used.The influences of initial pH of the bacteria medium,culture temperature,shaking speed,degumming time and inoculum size on submerged fermentation degumming were evaluated by using fractional factorial design.The main factors in the analysis were culture temperature,shaking speed and initial pH.The residual gum mass fraction was used as the optimization index,and the optimal conditions for degumming were determined by central composite design and RSM.Thus with only a limited number of experiments,an optimal ramie microbial degumming condition was found as the culture temperature of 40℃,the initial pH in the culture medium of 8.5,the shaking speed of 205 r/min,the degumming time of 96 h and the inoculum size of 5%.After microbial degumming of ramie under the optimal conditions,there was only 10.6%residual gum by mass in the fiber.In addition,the effective degumming of BS DZ_(5)was also confirmed by a scanning electron microscope(SEM).展开更多
This study concerns calculation of phased array beam fields of the nonlinear Rayleigh surface waves based on the integral solutions for a nonparaxial wave equation. Since the parabolic approximation model for describi...This study concerns calculation of phased array beam fields of the nonlinear Rayleigh surface waves based on the integral solutions for a nonparaxial wave equation. Since the parabolic approximation model for describing the nonlinear Rayleigh waves has certain limitations in modeling the sound beam fields of phased arrays, a more general model equation and integral forms of quasilinear solutions are introduced. Some features of steered and focused beam fields radiated from a linear phased array of the second harmonic Rayleigh wave are presented.展开更多
In order to solve the problem of single arc plasma actuator's failure to suppress the boundary layer separation, the effectiveness of the array surface arc plasma actuator to enhance the excitation intensity is ve...In order to solve the problem of single arc plasma actuator's failure to suppress the boundary layer separation, the effectiveness of the array surface arc plasma actuator to enhance the excitation intensity is verified by experiment. In this study, an electrical parameter measurement system and high-speed schlieren technology were adopted to delve into the electrical, flow field, and excitation characteristics of the high-energy array surface arc plasma actuator under low ambient pressure. The high-energy array surface arc discharge released considerable heat rapidly;as a result, two characteristic structures were generated, i.e., the precursor shock wave and thermal deposition area. The duration increased with the increase in environmental pressure. The lower the pressure, the wider the thermal deposition area's influence range. The precursor shock wave exhibited a higher propagation speed at the initial phase of discharge;it tended to decay over time and finally remained at 340 m/s. The lower the environmental pressure, the higher the speed would be at the initial phase. High-energy array surface arc plasma actuator can be employed to achieve effective high-speed aircraft flow control.展开更多
Far-field properties dependent on array scale, separation, element width and emitted wavelength are system atically analyzed theoretically and experimentally. An array model based on the finite-difference method is es...Far-field properties dependent on array scale, separation, element width and emitted wavelength are system atically analyzed theoretically and experimentally. An array model based on the finite-difference method is established to simulate the far-field profile of the coherent arrays. Some important conclusions are obtained. To achieve a higher quality beam, it is necessary to decrease separation between elements, or to increase the element width. Higher brightness can be achieved in the array with larger scale. Emitted wavelength also has an influence on the far-field profile. These analyses can be extended to the future design of coherent vertical cavity surface emitting laser arrays.展开更多
Recently,Reconfigurable Intelligent Surfaces(RISs)have drawn intensive attention in the realization of the smart radio environment.However,existing works mainly consider the RIS as a whole uniform plane,which may be u...Recently,Reconfigurable Intelligent Surfaces(RISs)have drawn intensive attention in the realization of the smart radio environment.However,existing works mainly consider the RIS as a whole uniform plane,which may be unrealistic to be installed on the facade of buildings when the RIS is extremely large.In contrast,this paper investigates a practical Sparse Array of Sub-surface(SAoS)deployment of the RIS for uplink multi-user millimeter Wave(mmWave)communication systems,in which the Mobile Stations(MSs)are distributed in the blind coverage area due to the blockage.In order to exploit the benefits of the sparse deployment,the correlation of the effective channel is firstly investigated.Then the approximation and lower bounds of the ergodic spectral efficiency are derived under frequency and spatial multiplexing scenarios,respectively.Based on the autocorrelation of the effective channel,we obtain an optimal reflect coefficient design as well as the deployment guidelines of RIS tiles.Moreover,the RIS tile scheduling algorithms are also proposed.Numerical results show that the ergodic spectral efficiency approximation matches well with the Monte Carlo result under frequency multiplexing scenarios,and the lower bound is tight under spatial multiplexing scenarios only when the effective channel is strongly correlated.On the basis of the RIS tile scheduling algorithm and the reflect coefficient design,the system performance can be significantly improved under frequency multiplexing scenarios.On the other hand,by deploying more sparse RIS tiles,we can increase the multiplexing gain under spatial multiplexing scenarios.展开更多
Based on the multiple scattering method,this paper investigates a benchmark problem of the propagation of liquid surface waves over finite graphene (or honeycomb) structured arrays of cylinders.Comparing the graphene ...Based on the multiple scattering method,this paper investigates a benchmark problem of the propagation of liquid surface waves over finite graphene (or honeycomb) structured arrays of cylinders.Comparing the graphene structured array with the square structured and with triangle structured arrays,it finds that the finite graphene structure can produce more complete band gaps than the other finite structures,and the finite graphene structure has less localized ability than the other finite structures.展开更多
Relaxation rate is a very crucial parameter in physics.For the water surface wave,its relaxation rate is directly relevantto the response time of disturbed spectrum returning back to its quasi-steady state.It is diffi...Relaxation rate is a very crucial parameter in physics.For the water surface wave,its relaxation rate is directly relevantto the response time of disturbed spectrum returning back to its quasi-steady state.It is difficult to be calculated directly asa function of different oceanographic and meteorological parameters.Previous researches were mainly based on experimentalmeasurements or parameterization.In this paper,a method based on the liner array charge-coupled device(CCD)is proposed tomeasure the relaxation rate of the water surface wave.Compared with the traditional methods?it can obtain the information ofsurface wave and current synchronously,and works well under a multi wind-wave environment.Wind wav^tank experimentswere carried out based on this method.The good consistency between the results calculated by this method and the traditionalrelaxation rate models shows the validity of the proposed method.This method can be further used to study the modulation theoryof surface waves by currents.展开更多
Beam steering in implant defined coherently coupled vertical cavity surface emitting laser (VCSEL) arrays is simulated using the FDTD solution software. Angular deflection dependent on relative phase differences amo...Beam steering in implant defined coherently coupled vertical cavity surface emitting laser (VCSEL) arrays is simulated using the FDTD solution software. Angular deflection dependent on relative phase differences among elements, inter-element spacing, element size and emitted wavelength is analyzed detailedly and systematically. We design and fabricate 1×2 implant defined VCSEL arrays for optimum beam steering performance. Electroni- cally controlled beam steering with a maximum deflection angle of 1.6° is successfully achieved in the 1 × 2 VCSEL arrays. The percentage of the power in the central lobe is above 39% when steering. The results show that the steering is controllable. Compared with other beam steering methods, the fabrication process is simple and of low cost.展开更多
The near infrared (NIR) fluorescence enhancement by local surface plasmon resonanoce from arrayed gold (Au) nanoblocks was investigated by NIR fluorescent dyes, IR780, immobilized in hydrophobic DNA thin film on glass...The near infrared (NIR) fluorescence enhancement by local surface plasmon resonanoce from arrayed gold (Au) nanoblocks was investigated by NIR fluorescent dyes, IR780, immobilized in hydrophobic DNA thin film on glass substrates, to clarify the gap mode effect on the fluorescence enhancement. In the substrate with Dimer type Au nanoblock arrangement, average total fluorescence intensity was larger by 10.0, 2.4, and 12.4 times for non-polarized, P- and S- polarization as compared with that on a glass substrate alone, respectively. These findings suggested that enhancement of excitation light intensity at nanogap in the Dimer type Au nanoblock arrangement affected the fluorescence intensity. Average total fluorescence intensity, on the other hand, was smaller by 0.63 times as compared with that on a glass substrate alone in the checkerboard type Au array. It is suggested that the fluorescence quenching was caused by the energy transfer from the excited state of IR780 to Au nanoblocks or by the increased deactivation of excited dye molecules induced by resonance with Au nanoblocks at the checkerboard arrangement. We have firstly achieved the NIR fluorescence enhancement by LSPR due to the gap mode.展开更多
A facile route for preparation of gradient wettability surface on copper substrate with contact angle changing from 90.3°to4.2°was developed.The Cu(OH)2 nanoribbon arrays were electrochemically deposited o...A facile route for preparation of gradient wettability surface on copper substrate with contact angle changing from 90.3°to4.2°was developed.The Cu(OH)2 nanoribbon arrays were electrochemically deposited on copper foil via a modified anodization technology,and the growth degree and density of the Cu(OH)2 arrays may be controlled varying with position along the substrate by slowly adding aqueous solution of KOH into the two-electrode cell of an anodization system to form the gradient surface.The prepared surface was water resistant and thermal stable,which could keep its gradient wetting property after being immersed in water bath at 100℃ for 10 h.The results of scanning electron microscopy(SEM),X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS) demonstrate that the distribution of Cu(OH)2 nanoribbon arrays on copper surface are responsible for the gradient wettability.展开更多
In this paper,we investigate the end-to-end performance of intelligent reflecting surface(IRS)-assisted wireless communication systems.We consider a system in which an IRS is deployed on a uniform planar array(UPA)con...In this paper,we investigate the end-to-end performance of intelligent reflecting surface(IRS)-assisted wireless communication systems.We consider a system in which an IRS is deployed on a uniform planar array(UPA)configuration,including a large number of reflecting elements,where the transmitters and receivers are only equipped with a single antenna.Our objective is to analytically obtain the achievable ergodic rate,outage probability,and bit error rate(BER)of the system.Furthermore,to maximize the system’s signal-to-noise ratio(SNR),we design the phase shift of each reflecting element and derive the optimal reflection phase of the IRS based on the channel state information(CSI).We also derive the exact expression of the SNR probability density function(p.d.f.)and show that it follows a non-central Chi-square distribution.Using the p.d.f.,we then derive the theoretical results of the achievable rate,outage probability,and BER.The accuracy of the obtained theoretical results is also verified through numerical simulation.Itwas shown that the achievable rate,outage probability,and BER could be improved by increasing the number of reflecting elements and choosing an appropriate SNR regime.Furthermore,we also find that the IRS-assisted communication system achieves better performance than the existing end-to-end wireless communication.展开更多
The paper analyses the characteristics of radio frequency interference (RFI) in HF surface wave radar (HFSWR) which adopts the linear frequency modulated interrupted continuous wave (FMICW). RFI will influence a...The paper analyses the characteristics of radio frequency interference (RFI) in HF surface wave radar (HFSWR) which adopts the linear frequency modulated interrupted continuous wave (FMICW). RFI will influence all the range cells including all the positive frequency and negative frequency, and the negative frequency range cells contain only the interference information. Based on the above characteristics, we introduce and analyze a new adaptive interference mitigation beamforming algorithm using the negative frequency range cells samples to estimate the interference covariance matrix. Experimental results confirm that this general and robust algorithm can achieve effective RFI suppression using the data recorded by the HFSWR, located near Zhoushan in Zhejiang China.展开更多
In addition to the plasmon-mediated resonant coupling mechanism,the excitation of hot electron induced by plasmon presents a promising path for developing high-performance optoelectronic devices tailored for various a...In addition to the plasmon-mediated resonant coupling mechanism,the excitation of hot electron induced by plasmon presents a promising path for developing high-performance optoelectronic devices tailored for various applications.This study introduces a sophisticated design for a solar-blind ultraviolet(UV)detector array using linear In-doped Ga_(2)O_(3) (InGaO)modulated by platinum(Pt)nanoparticles(PtNPs).The construction of this array involves depositing a thin film of Ga_(2)O_(3) through the plasmonenhanced chemical vapor deposition(PECVD)technique.Subsequently,PtNPs were synthesized via radio-frequency magnetron sputtering and annealing process.The performance of these highly uniform arrays is significantly enhanced owing to the generation of high-energy hot electrons.This process is facilitated by non-radiative decay processes induced by PtNPs.Notably,the array achieves maximum responsivity(R)of 353 mA/W,external quantum efficiency(EQE)of 173%,detectivity(D*)of approximately 10~(13)Jones,and photoconductive gain of 1.58.In addition,the standard deviation for photocurrent stays below17%for more than 80%of the array units within the array.Subsequently,the application of this array extends to photon detection in the deep-UV(DUV)range.This includes critical areas such as imaging sensing and water quality monitoring.By leveraging surface plasmon coupling,the array achieves high-performance DUV photon detection.This approach enables a broad spectrum of practical applications,underscoring the significant potential of this technology for the advancement of DUV detectors.展开更多
We theoretically investigate the influence of the shape of nanoholes on plasmonic behaviours in coupled elliptical metallic nanotube arrays by the finite-difference time-domain (FDTD) method. We study the structure ...We theoretically investigate the influence of the shape of nanoholes on plasmonic behaviours in coupled elliptical metallic nanotube arrays by the finite-difference time-domain (FDTD) method. We study the structure in two cases: one for the array aligned along the minor axis and the other for the array aligned along the major axis. It is found that the optical properties and plasmonic effects can be tuned by the effective surface charges as a result of the variation in the minor axis length. Based on the localized nature of electric field distributions, we also clearly show that the presence of localized plasmon resonant modes originates from multipolar plasmon polaritons and a large magnitude of opposing surface charges build up in the gap between adjacent nanotubes.展开更多
We describe the structure and testing of one-dimensional array parallel-optics photo-detectors with 16 photodiodes of which each diode operates up to 8 Gb/s. The single element is vertical and top illuminated 30μm-di...We describe the structure and testing of one-dimensional array parallel-optics photo-detectors with 16 photodiodes of which each diode operates up to 8 Gb/s. The single element is vertical and top illuminated 30μm-diameter silicon on insulator (Ge-on-SOI) PIN photodetector. High-quality Ge absorption layer is epitaxially grown on SO1 substrate by the ultra-high vacuum chemical vapor deposition (UHV-CVD). The photodiode exhibits a good responsivity of 0.20 A/W at a wavelength of 1550 nm. The dark current is as low as 0.36/aA at a reverse bias of 1 V, and the corresponding current density is about 51 mA/cm2. The detector with a diameter of 30 t.trn is measured at an incident light of 1.55 μm and 0.5 mW, and the 3-dB bandwidth is 7.39 GHz without bias and 13.9 GHz at a reverse bias of 3 V. The 16 devices show a good consistency.展开更多
Characteristic features of infrasound waves observed in the Antarctic represent a physical interaction relating surface environment in the continental margin and surrounding Southern Ocean. Source location of several ...Characteristic features of infrasound waves observed in the Antarctic represent a physical interaction relating surface environment in the continental margin and surrounding Southern Ocean. Source location of several infrasound events is demonstrated by using combination of two array deployments along a coast of the Lützow-Holm Bay (LHB), East Antarctica, for data retrieving period in January-June 2015. These infrasound arrays being established in January 2013 clearly detected temporal variations in frequency content and propagation direction of the identified seven large events. Many of these sources are assumed to have cryoseismic origins;the ice-quakes associated with calving of glaciers, discharge of sea-ice, collision between sea-ice and icebergs around the LHB. Detail and continuous measurements of infrasound waves in the Antarctic are a proxy for monitoring regional environment as well as climate change in high southern latitude.展开更多
In accordance with the enhancement for luminous efficiency improving, LED (Light Emitting Diode) has been gradually developed by combining the characteristics of small volume, impact resistance, good reliability, long...In accordance with the enhancement for luminous efficiency improving, LED (Light Emitting Diode) has been gradually developed by combining the characteristics of small volume, impact resistance, good reliability, long life, low power consumption with multiple purposes for energy saving and environmental protection. Therefore, the array LED has been widely applied in human livings nowadays. This study applies the finite element analysis software ANSYS to analyze the thermal behavior of the array power LED work lamp which is modeled by four same-size LED with MCPCB (Metal Core Print Circuit Board) mounted on a base heat-sink. The Flotran heat flow analysis is applied to obtain the natural convection of air coefficient, while the convection value can be confirmed by the iterative method since it is set as the boundary condition for ANSYS thermal analysis to obtain the temperature distribution, accordingly the chip junction temperature and the base heat-sink temperature were followed through experiments in order to check if the simulation results meet the design requirements and coincide with the power LED product design specification. Prior to the optimal design process for chip junction temperature, the most significant parameters were first chosen by the fractional factorial design. The regressive models were respectively setup by the dual response surface method (RSM) and the mixed response surface method. Furthermore, the genetic algorithm combined with response surface method was applied to acquire the optimal design parameters, and the results were obtained from both methods, which are reviewed for comparison. Afterwards, the mixed response surface method is adopted to investigate the effects of interactions among various factors on chip junction temperature. In conclusion, it is found that the thermal conductivity of MCPCB and the height of base heat-sink are the two major significant factors. In addition, the interactive effects between chip size and thermal conductivity of chip adhesion layer are acknowledged as the most significant interaction influenced on the chip junction temperature.展开更多
The plasmonics Talbot effect in metallic layer with infinite periodic grooves is presented in this study. Numerical approach based on the finite element method is employed to verify the derived Talbot carpet on the no...The plasmonics Talbot effect in metallic layer with infinite periodic grooves is presented in this study. Numerical approach based on the finite element method is employed to verify the derived Talbot carpet on the non-illumination side. The groove depth is less than the metallic layer thickness; however, for specific conditions, surface plasmons polaritons(SPPs)can penetrate through grooves, propagate under the metallic layer, and form Talbot revivals. The geometrical parameters are specified via groove width, gap size, period, and wavelength, and their proper values are determined by introducing two opening ratio parameters. To quantitatively compare different Talbot carpets, we introduce new parameters such as R-square that characterizes the periodicity of Talbot images. The higher the R-square of a carpet, the more coincident with non-paraxial approximation the Talbot distance becomes. We believe that our results can help to understand the nature of SPPs and also contribute to exploring this phenomenon in Talbot-image-based applications, including imaging, optical systems, and measurements.展开更多
基金supported by the National Natural Science Foundation of China(61901493,61901492)the Natural Science Foundation of Hunan Province(2020JJ5676)the Science and Technology Innovation Program of Hunan Province(2020RC2048).
文摘The electromagnetic surface antenna array(EMSAA)has been proposed for obtaining reflection suppression and excellent radiation simultaneously.The antenna with rectangular radiation patch is used to design anisotropic electromagnetic surface.Preternatural reflection characteristics of the element antenna can be tailored depending on the incident polarizations.EMSAA can be constructed by using single structured element antenna with 90° rotation and orthometric arrangement.This orthometric arrangement of EMSAA is helpful to achieve reflection suppression and excellent radiation.The simulated results show that the reflection of EMSAA is suppressed from 5.0 GHz to 8.0 GHz with peak reduction of 12.3 dB.The linear-and circular-polarized radiation properties of EMSAA are obtained and the maximum gain is 14.3 dBi.The measured results are consistent with the simulation results.The results demonstrate that the reflection suppression and excellent radiation are achieved simultaneously.Such design of EMSAA will open the path for integrating antenna fields and electromagnetic surface(EMS)fields.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61376049,61076044,61107026,61204011and U1037602the Natural Science Foundation of Beijing under Grant Nos 4132006,4102003,and 4112006+1 种基金the Scientific Research Fund Project of Municipal Education Commission of Beijing under Grant No KM201210005004the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No 20121103110018
文摘A three-dimensional electrical-thermal coupling model based on the finite element method is applied to study thermal properties of implant-defined vertical cavity surface emitting laser (VCSEL) arrays. Several parameters including inter-element spacing, scales, injected current density and substrate temperature are considered. The actual temperatures obtained through experiment are in excellent agreement with the calculated results, which proves the accuracy of the model. Due to the serious thermal problem, it is essential to design arrays of low self-heating. The analysis can provide a foundation for designing VCSEL arrays in the future.
基金National Natural Science Foundation of China(No.51863020)。
文摘As a kind of natural fiber,ramie fiber has distinctive advantages in textile application,but the application is limited due to the traditional degumming mode.Compared with the traditional degumming process,the microbial degumming process has many advantages.To obtain the optimal conditions for degumming ramie with Bacillus subtilis DZ_(5)(BS DZ_(5)),a combined statistical approach of orthogonal array design(OAD)and response surface methodology(RSM)was used.The influences of initial pH of the bacteria medium,culture temperature,shaking speed,degumming time and inoculum size on submerged fermentation degumming were evaluated by using fractional factorial design.The main factors in the analysis were culture temperature,shaking speed and initial pH.The residual gum mass fraction was used as the optimization index,and the optimal conditions for degumming were determined by central composite design and RSM.Thus with only a limited number of experiments,an optimal ramie microbial degumming condition was found as the culture temperature of 40℃,the initial pH in the culture medium of 8.5,the shaking speed of 205 r/min,the degumming time of 96 h and the inoculum size of 5%.After microbial degumming of ramie under the optimal conditions,there was only 10.6%residual gum by mass in the fiber.In addition,the effective degumming of BS DZ_(5)was also confirmed by a scanning electron microscope(SEM).
基金Supported by the National Natural Science Foundation of China under Grant Nos 61271356 and 51575541the National Research Foundation of Korea under Grant Nos 2013-M2A2A9043241 and 2013-R1A2A2A01016042the Hunan Provincial Innovation Foundation For Postgraduate under Grant No CX2016B046
文摘This study concerns calculation of phased array beam fields of the nonlinear Rayleigh surface waves based on the integral solutions for a nonparaxial wave equation. Since the parabolic approximation model for describing the nonlinear Rayleigh waves has certain limitations in modeling the sound beam fields of phased arrays, a more general model equation and integral forms of quasilinear solutions are introduced. Some features of steered and focused beam fields radiated from a linear phased array of the second harmonic Rayleigh wave are presented.
文摘In order to solve the problem of single arc plasma actuator's failure to suppress the boundary layer separation, the effectiveness of the array surface arc plasma actuator to enhance the excitation intensity is verified by experiment. In this study, an electrical parameter measurement system and high-speed schlieren technology were adopted to delve into the electrical, flow field, and excitation characteristics of the high-energy array surface arc plasma actuator under low ambient pressure. The high-energy array surface arc discharge released considerable heat rapidly;as a result, two characteristic structures were generated, i.e., the precursor shock wave and thermal deposition area. The duration increased with the increase in environmental pressure. The lower the pressure, the wider the thermal deposition area's influence range. The precursor shock wave exhibited a higher propagation speed at the initial phase of discharge;it tended to decay over time and finally remained at 340 m/s. The lower the environmental pressure, the higher the speed would be at the initial phase. High-energy array surface arc plasma actuator can be employed to achieve effective high-speed aircraft flow control.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61376049,61076044,61107026 and 61204011the Scientific Research Fund Project of Municipal Education Commission of Beijing under Grant No PXM2014-014204-07-000018
文摘Far-field properties dependent on array scale, separation, element width and emitted wavelength are system atically analyzed theoretically and experimentally. An array model based on the finite-difference method is established to simulate the far-field profile of the coherent arrays. Some important conclusions are obtained. To achieve a higher quality beam, it is necessary to decrease separation between elements, or to increase the element width. Higher brightness can be achieved in the array with larger scale. Emitted wavelength also has an influence on the far-field profile. These analyses can be extended to the future design of coherent vertical cavity surface emitting laser arrays.
基金This work was supported in part by the National Key Research and Development Program 2018YFA0701602the National Science Foundation of China(NSFC)for Distinguished Young Scholars with Grant 61625106,and the NSFC under Grant 61941104.
文摘Recently,Reconfigurable Intelligent Surfaces(RISs)have drawn intensive attention in the realization of the smart radio environment.However,existing works mainly consider the RIS as a whole uniform plane,which may be unrealistic to be installed on the facade of buildings when the RIS is extremely large.In contrast,this paper investigates a practical Sparse Array of Sub-surface(SAoS)deployment of the RIS for uplink multi-user millimeter Wave(mmWave)communication systems,in which the Mobile Stations(MSs)are distributed in the blind coverage area due to the blockage.In order to exploit the benefits of the sparse deployment,the correlation of the effective channel is firstly investigated.Then the approximation and lower bounds of the ergodic spectral efficiency are derived under frequency and spatial multiplexing scenarios,respectively.Based on the autocorrelation of the effective channel,we obtain an optimal reflect coefficient design as well as the deployment guidelines of RIS tiles.Moreover,the RIS tile scheduling algorithms are also proposed.Numerical results show that the ergodic spectral efficiency approximation matches well with the Monte Carlo result under frequency multiplexing scenarios,and the lower bound is tight under spatial multiplexing scenarios only when the effective channel is strongly correlated.On the basis of the RIS tile scheduling algorithm and the reflect coefficient design,the system performance can be significantly improved under frequency multiplexing scenarios.On the other hand,by deploying more sparse RIS tiles,we can increase the multiplexing gain under spatial multiplexing scenarios.
基金supported by the National Natural Science Foundation of China (10932010 and 11072220)the Young Foundation of Zhejiang Normal University (KJ20100001)
文摘Based on the multiple scattering method,this paper investigates a benchmark problem of the propagation of liquid surface waves over finite graphene (or honeycomb) structured arrays of cylinders.Comparing the graphene structured array with the square structured and with triangle structured arrays,it finds that the finite graphene structure can produce more complete band gaps than the other finite structures,and the finite graphene structure has less localized ability than the other finite structures.
基金National Natural Science Foundation of China(No.41276185)
文摘Relaxation rate is a very crucial parameter in physics.For the water surface wave,its relaxation rate is directly relevantto the response time of disturbed spectrum returning back to its quasi-steady state.It is difficult to be calculated directly asa function of different oceanographic and meteorological parameters.Previous researches were mainly based on experimentalmeasurements or parameterization.In this paper,a method based on the liner array charge-coupled device(CCD)is proposed tomeasure the relaxation rate of the water surface wave.Compared with the traditional methods?it can obtain the information ofsurface wave and current synchronously,and works well under a multi wind-wave environment.Wind wav^tank experimentswere carried out based on this method.The good consistency between the results calculated by this method and the traditionalrelaxation rate models shows the validity of the proposed method.This method can be further used to study the modulation theoryof surface waves by currents.
基金Supported by the‘Supporting First Action’Joint Foundation for Outstanding Postdoctoral Program under Grant Nos Y7YBSH0001 and Y7BSH14001the National Natural Science Foundation of China under Grant No 61434006the National Key Basic Research Program of China under Grant No 2017YFB0102302
文摘Beam steering in implant defined coherently coupled vertical cavity surface emitting laser (VCSEL) arrays is simulated using the FDTD solution software. Angular deflection dependent on relative phase differences among elements, inter-element spacing, element size and emitted wavelength is analyzed detailedly and systematically. We design and fabricate 1×2 implant defined VCSEL arrays for optimum beam steering performance. Electroni- cally controlled beam steering with a maximum deflection angle of 1.6° is successfully achieved in the 1 × 2 VCSEL arrays. The percentage of the power in the central lobe is above 39% when steering. The results show that the steering is controllable. Compared with other beam steering methods, the fabrication process is simple and of low cost.
文摘The near infrared (NIR) fluorescence enhancement by local surface plasmon resonanoce from arrayed gold (Au) nanoblocks was investigated by NIR fluorescent dyes, IR780, immobilized in hydrophobic DNA thin film on glass substrates, to clarify the gap mode effect on the fluorescence enhancement. In the substrate with Dimer type Au nanoblock arrangement, average total fluorescence intensity was larger by 10.0, 2.4, and 12.4 times for non-polarized, P- and S- polarization as compared with that on a glass substrate alone, respectively. These findings suggested that enhancement of excitation light intensity at nanogap in the Dimer type Au nanoblock arrangement affected the fluorescence intensity. Average total fluorescence intensity, on the other hand, was smaller by 0.63 times as compared with that on a glass substrate alone in the checkerboard type Au array. It is suggested that the fluorescence quenching was caused by the energy transfer from the excited state of IR780 to Au nanoblocks or by the increased deactivation of excited dye molecules induced by resonance with Au nanoblocks at the checkerboard arrangement. We have firstly achieved the NIR fluorescence enhancement by LSPR due to the gap mode.
基金Project(S2012010010417)supported by the Guangdong Natural Science Foundation,ChinaProject(20130172110008)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘A facile route for preparation of gradient wettability surface on copper substrate with contact angle changing from 90.3°to4.2°was developed.The Cu(OH)2 nanoribbon arrays were electrochemically deposited on copper foil via a modified anodization technology,and the growth degree and density of the Cu(OH)2 arrays may be controlled varying with position along the substrate by slowly adding aqueous solution of KOH into the two-electrode cell of an anodization system to form the gradient surface.The prepared surface was water resistant and thermal stable,which could keep its gradient wetting property after being immersed in water bath at 100℃ for 10 h.The results of scanning electron microscopy(SEM),X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS) demonstrate that the distribution of Cu(OH)2 nanoribbon arrays on copper surface are responsible for the gradient wettability.
基金supported in part by the Joint Research Fund for Guangzhou University and Hong Kong University of Science and Technology under Grant No.YH202203the Guangzhou Basic Research Program Municipal School(College)Joint Funding Project,the Research Project of Guizhou University for Talent Introduction under Grant No.[2020]61+7 种基金the Cultivation Project of Guizhou University under Grant No.[2019]56the Open Fund of Key Laboratory of Advanced Manufacturing Technology,Ministry of Education under Grant No.GZUAMT2021KF[01]the National Natural Science Foundation of China under Grant Nos.51978089 and 62171119the Key R&D Plan of Sichuan Science and Technology Department under Grant No.22ZDYF2726the Chengdu Normal University Scientific Research and Innovation Team under Grant Nos.CSCXTD2020B09,ZZBS201907,CS21ZC01the Open Project of Intelligent Manufacturing Industry Technology Research Institute under Grant No.ZNZZ2208the National Key Research and Development Program of China under Grant No.2020YFB1807201Key research and development plan of Jiangsu Province under Grant No.BE2021013-3.
文摘In this paper,we investigate the end-to-end performance of intelligent reflecting surface(IRS)-assisted wireless communication systems.We consider a system in which an IRS is deployed on a uniform planar array(UPA)configuration,including a large number of reflecting elements,where the transmitters and receivers are only equipped with a single antenna.Our objective is to analytically obtain the achievable ergodic rate,outage probability,and bit error rate(BER)of the system.Furthermore,to maximize the system’s signal-to-noise ratio(SNR),we design the phase shift of each reflecting element and derive the optimal reflection phase of the IRS based on the channel state information(CSI).We also derive the exact expression of the SNR probability density function(p.d.f.)and show that it follows a non-central Chi-square distribution.Using the p.d.f.,we then derive the theoretical results of the achievable rate,outage probability,and BER.The accuracy of the obtained theoretical results is also verified through numerical simulation.Itwas shown that the achievable rate,outage probability,and BER could be improved by increasing the number of reflecting elements and choosing an appropriate SNR regime.Furthermore,we also find that the IRS-assisted communication system achieves better performance than the existing end-to-end wireless communication.
文摘The paper analyses the characteristics of radio frequency interference (RFI) in HF surface wave radar (HFSWR) which adopts the linear frequency modulated interrupted continuous wave (FMICW). RFI will influence all the range cells including all the positive frequency and negative frequency, and the negative frequency range cells contain only the interference information. Based on the above characteristics, we introduce and analyze a new adaptive interference mitigation beamforming algorithm using the negative frequency range cells samples to estimate the interference covariance matrix. Experimental results confirm that this general and robust algorithm can achieve effective RFI suppression using the data recorded by the HFSWR, located near Zhoushan in Zhejiang China.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFB3605404)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.62204125)+2 种基金the Joint Funds of the National Natural Science Foundation of China(Grant No.U23A20349)the Natural Science Research Start-up Foundation of Recuring Talents of Nanjing University of Posts and Telecommunications(Grant Nos.XK1060921115 and XK1060921002)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.SJCX23_0300)。
文摘In addition to the plasmon-mediated resonant coupling mechanism,the excitation of hot electron induced by plasmon presents a promising path for developing high-performance optoelectronic devices tailored for various applications.This study introduces a sophisticated design for a solar-blind ultraviolet(UV)detector array using linear In-doped Ga_(2)O_(3) (InGaO)modulated by platinum(Pt)nanoparticles(PtNPs).The construction of this array involves depositing a thin film of Ga_(2)O_(3) through the plasmonenhanced chemical vapor deposition(PECVD)technique.Subsequently,PtNPs were synthesized via radio-frequency magnetron sputtering and annealing process.The performance of these highly uniform arrays is significantly enhanced owing to the generation of high-energy hot electrons.This process is facilitated by non-radiative decay processes induced by PtNPs.Notably,the array achieves maximum responsivity(R)of 353 mA/W,external quantum efficiency(EQE)of 173%,detectivity(D*)of approximately 10~(13)Jones,and photoconductive gain of 1.58.In addition,the standard deviation for photocurrent stays below17%for more than 80%of the array units within the array.Subsequently,the application of this array extends to photon detection in the deep-UV(DUV)range.This includes critical areas such as imaging sensing and water quality monitoring.By leveraging surface plasmon coupling,the array achieves high-performance DUV photon detection.This approach enables a broad spectrum of practical applications,underscoring the significant potential of this technology for the advancement of DUV detectors.
基金Project supported by the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100162110068)the Graduate Education Innovation Project of Central South University (Grant No. 2010ssxt010)the Hunan Provincial Innovation Foundation for Postgraduate (Grant No. CX2009B029)
文摘We theoretically investigate the influence of the shape of nanoholes on plasmonic behaviours in coupled elliptical metallic nanotube arrays by the finite-difference time-domain (FDTD) method. We study the structure in two cases: one for the array aligned along the minor axis and the other for the array aligned along the major axis. It is found that the optical properties and plasmonic effects can be tuned by the effective surface charges as a result of the variation in the minor axis length. Based on the localized nature of electric field distributions, we also clearly show that the presence of localized plasmon resonant modes originates from multipolar plasmon polaritons and a large magnitude of opposing surface charges build up in the gap between adjacent nanotubes.
文摘We describe the structure and testing of one-dimensional array parallel-optics photo-detectors with 16 photodiodes of which each diode operates up to 8 Gb/s. The single element is vertical and top illuminated 30μm-diameter silicon on insulator (Ge-on-SOI) PIN photodetector. High-quality Ge absorption layer is epitaxially grown on SO1 substrate by the ultra-high vacuum chemical vapor deposition (UHV-CVD). The photodiode exhibits a good responsivity of 0.20 A/W at a wavelength of 1550 nm. The dark current is as low as 0.36/aA at a reverse bias of 1 V, and the corresponding current density is about 51 mA/cm2. The detector with a diameter of 30 t.trn is measured at an incident light of 1.55 μm and 0.5 mW, and the 3-dB bandwidth is 7.39 GHz without bias and 13.9 GHz at a reverse bias of 3 V. The 16 devices show a good consistency.
文摘Characteristic features of infrasound waves observed in the Antarctic represent a physical interaction relating surface environment in the continental margin and surrounding Southern Ocean. Source location of several infrasound events is demonstrated by using combination of two array deployments along a coast of the Lützow-Holm Bay (LHB), East Antarctica, for data retrieving period in January-June 2015. These infrasound arrays being established in January 2013 clearly detected temporal variations in frequency content and propagation direction of the identified seven large events. Many of these sources are assumed to have cryoseismic origins;the ice-quakes associated with calving of glaciers, discharge of sea-ice, collision between sea-ice and icebergs around the LHB. Detail and continuous measurements of infrasound waves in the Antarctic are a proxy for monitoring regional environment as well as climate change in high southern latitude.
文摘In accordance with the enhancement for luminous efficiency improving, LED (Light Emitting Diode) has been gradually developed by combining the characteristics of small volume, impact resistance, good reliability, long life, low power consumption with multiple purposes for energy saving and environmental protection. Therefore, the array LED has been widely applied in human livings nowadays. This study applies the finite element analysis software ANSYS to analyze the thermal behavior of the array power LED work lamp which is modeled by four same-size LED with MCPCB (Metal Core Print Circuit Board) mounted on a base heat-sink. The Flotran heat flow analysis is applied to obtain the natural convection of air coefficient, while the convection value can be confirmed by the iterative method since it is set as the boundary condition for ANSYS thermal analysis to obtain the temperature distribution, accordingly the chip junction temperature and the base heat-sink temperature were followed through experiments in order to check if the simulation results meet the design requirements and coincide with the power LED product design specification. Prior to the optimal design process for chip junction temperature, the most significant parameters were first chosen by the fractional factorial design. The regressive models were respectively setup by the dual response surface method (RSM) and the mixed response surface method. Furthermore, the genetic algorithm combined with response surface method was applied to acquire the optimal design parameters, and the results were obtained from both methods, which are reviewed for comparison. Afterwards, the mixed response surface method is adopted to investigate the effects of interactions among various factors on chip junction temperature. In conclusion, it is found that the thermal conductivity of MCPCB and the height of base heat-sink are the two major significant factors. In addition, the interactive effects between chip size and thermal conductivity of chip adhesion layer are acknowledged as the most significant interaction influenced on the chip junction temperature.
基金Project supported by the 111 Project,China(Grant No.D17021)the Changjiang Scholars and Innovative Research Team in University,China(Grant No.PCSIRT,IRT 16R07)
文摘The plasmonics Talbot effect in metallic layer with infinite periodic grooves is presented in this study. Numerical approach based on the finite element method is employed to verify the derived Talbot carpet on the non-illumination side. The groove depth is less than the metallic layer thickness; however, for specific conditions, surface plasmons polaritons(SPPs)can penetrate through grooves, propagate under the metallic layer, and form Talbot revivals. The geometrical parameters are specified via groove width, gap size, period, and wavelength, and their proper values are determined by introducing two opening ratio parameters. To quantitatively compare different Talbot carpets, we introduce new parameters such as R-square that characterizes the periodicity of Talbot images. The higher the R-square of a carpet, the more coincident with non-paraxial approximation the Talbot distance becomes. We believe that our results can help to understand the nature of SPPs and also contribute to exploring this phenomenon in Talbot-image-based applications, including imaging, optical systems, and measurements.