Triboelectric nanogenerators(TENGs),a type of promising micro/nano energy source,have been arousing tremendous research interest since their inception and have been the subject of many striking developments,including ...Triboelectric nanogenerators(TENGs),a type of promising micro/nano energy source,have been arousing tremendous research interest since their inception and have been the subject of many striking developments,including defining the fundamental physical mechanisms,expanding applications in mechanical to electric power conversion and self-powered sensors,etc.TENGs with a superior surface charge density at the interfaces of the electrodes and dielectrics are found to be crucial to the enhancement of the performance of the devices.Here,an overview of recent advances,including material optimization,circuit design,and strategy conjunction,in developing TENGs through surface charge enhancement is presented.In these topics,different strategies are retrospected in terms of charge transport and trapping mechanisms,technical merits,and limitations.Additionally,the current challenges in high-performance TENG research and the perspectives in this field are discussed.展开更多
Biocatalysis in organic solvents(OSs)has numerous important applications,but native enzymes in OSs often exhibit limited catalytic performance.Herein,we proposed a computation-aided surface charge engineering strategy...Biocatalysis in organic solvents(OSs)has numerous important applications,but native enzymes in OSs often exhibit limited catalytic performance.Herein,we proposed a computation-aided surface charge engineering strategy to improve the catalytic performance of haloalkane dehalogenase DhaA in OSs based on the energetic analysis of substrate binding to the DhaA surface.Several variants with enhanced OS resistance were obtained by replacing negative charged residues on the surface with positive charged residue(Arg).Particularly,a four-substitution variant E16R/E93R/E121R/E257R exhibited the best catalytic performance(five-fold improvement in OS resistance and seven-fold half-life increase in 40%(vol)dimethylsulfoxide).As a result,the overall catalytic performance of the variant could be at least 26 times higher than the wild-type DhaA.Fluorescence spectroscopy and molecular dynamics simulation studies revealed that the residue substitution mainly enhanced OS resistance from four aspects:(a)improved the overall structural stability,(b)increased the hydrophobicity of the local microenvironment around the catalytic triad,(c)enriched the hydrophobic substrate around the enzyme molecule,and(d)lowered the contact frequency between OS molecules and the catalytic triad.Our findings validate that computationaided surface charge engineering is an effective and ingenious rational strategy for tailoring enzyme performance in OSs.展开更多
The surface charge characteristics in a three-electrode surface dielectric barrier discharge(SDBD)are experimentally investigated based on the Pockels effect of an electro-optical crystal. The actuator is based on the...The surface charge characteristics in a three-electrode surface dielectric barrier discharge(SDBD)are experimentally investigated based on the Pockels effect of an electro-optical crystal. The actuator is based on the most commonly used SDBD structure for airflow control, with an exposed electrode supplied with sinusoidal AC high voltage, a grounded encapsulated electrode and an additional exposed electrode downstream supplied with DC voltage. The ionic wind velocity and thrust can be significantly improved by increasing DC voltage although the plasma discharge characteristics are virtually unaffected. It is found that the negative charges generated by the discharge of the three-electrode structure accumulate on the dielectric surface significantly further downstream in an AC period compared to the actuator with a two-electrode structure. The negative charges in the downstream region increase as the DC voltage increases.In addition, the DC voltage affects the time required for the positive charge filaments to decay.The positive DC voltage expands the ionic acceleration zone downstream to produce a greater EHD force. The amplitude of the DC voltage affects the electric field on the dielectric surface and is therefore a key factor in the formation of the EHD force. Further research on the surface charge characteristics of a three-electrode structure has been conducted using a pulse power to drive the discharge, and the same conclusions are drawn. This work demonstrates a link between surface charge characteristics and EHD performance of a three-electrode SDBD actuator.展开更多
The surface charge accumulation on polymers often leads to surface flashover.Current solutions are mainly based on the introduction of inorganic fillers.The high-cost process and low compatibility remain formidable ch...The surface charge accumulation on polymers often leads to surface flashover.Current solutions are mainly based on the introduction of inorganic fillers.The high-cost process and low compatibility remain formidable challenges.Moreover,existing researches on all-organic insulation focus on capturing electrons,contrary to alleviating charge accumulation.Here,an all-organic modification coating was prepared on polystyrene(PS)with the large-scale atmospheric-pressure plasma,which exhibits outperformed function in mitigating surface charge accumulation.The surface charge dissipation rate and surface conductivity are promoted by about 1.37 and 9.45 times,respectively.Simulation and experimental results show that this all-organic modification coating has a smaller electron affinity potential compared with PS.The decrease of electron affinity potential may result in accelerated surface charge decay of PS,which has never been involved in previous works.Moreover,this coating also has good reliability in a repeated surface flashover.This facile and large-scale approach brings up a novel idea for surface charge regulation and the manufacture of advanced dielectric polymers.展开更多
The electrokinetic behavior and surface dissolution of serpentine mineral were studied through Zeta potential measurements, dissolution experiments and X-ray photoelectron spectroscopy. The results show that serpentin...The electrokinetic behavior and surface dissolution of serpentine mineral were studied through Zeta potential measurements, dissolution experiments and X-ray photoelectron spectroscopy. The results show that serpentine has an iso-electric point (IEP) of 11.9, which is higher than that of other phyllosilicate minerals. Dissolution experiments show that the hydroxyl is easy to dissolve with respect to the magnesium cations in the magnesium oxide octahedral sheet. As a result of hydroxyl dissolution, the magnesium ions are left on serpentine surface, which is responsible for serpentine surface charge. The removal of magnesium ions from serpentine surface by acid leaching results in a decrease of serpentine IEP. Therefore, it has been clearly established that the surface charge developed at the serpentine/aqueous electrical interface is a function of the serpentine surface incongruent dissolution.展开更多
Speciation and fractionation of heavy metals in soil subsamples experimentally loaded with Pb, Cd, Cu and Zn in orthogonal design was investigated by sequential extraction, and operationally defined as water soluble ...Speciation and fractionation of heavy metals in soil subsamples experimentally loaded with Pb, Cd, Cu and Zn in orthogonal design was investigated by sequential extraction, and operationally defined as water soluble and exchangeable(SE), weakly specific adsorbed(WSA), Fe and Mn oxides bound(OX) and organic bound(ORG). The results showed that fractions of heavy metals in the soil subsamples depended on their speciation. About 90% of Cd and 75% of Zn existed in soil subsamples in the SE fraction. Lead and Cu existed in soil subsamples as SE, WSA and OX fractions simultaneously, although SE was still the major fraction. Organic bound heavy metals were not clearly apparent in all the soil subsamples. The concentration of some heavy metal fractions in soil subsamples showed the good correlation with ionic impulsion of soil, especially for the SE fraction. Continuous saturation of soil subsamples with 0.20 mol/L NH 4Cl, which is the first step for determination of the negative surface charge of soil by the ion retention method, resulted in desorption of certain heavy metals from the soil. It was found that the percentage desorption of heavy metals from soil subsamples depended greatly on pH, the composition and original heavy metal content of the soil subsamples. However, most of the heavy metals in the soil subsamples were still be retained after multiple saturation. Compared with the parent soil, the negative surface charge of soil subsamples loaded with heavy metals did not show difference significantly from that of the parent one by statistical analysis. Heavy metals existed in the soil subsamples mainly as exchangeable and precipitated simultaneously.展开更多
A detailed understanding of the composition,buffering capacity,surface charge property,and metals leaching behavior of bauxite residue is the key to improved management,both in reducing the environmental impact and us...A detailed understanding of the composition,buffering capacity,surface charge property,and metals leaching behavior of bauxite residue is the key to improved management,both in reducing the environmental impact and using the material as an industrial by-product for other applications.In this study,physical,chemical,and surface charge properties of bauxite residue derived from a combined process were investigated.Results indicated that the main alkaline solids in bauxite residue were katoite,sodalite,and calcite.These minerals also lead to a higher acid neutralizing capacity of bauxite residue.Acid neutralizing capacity(ANC)to pH 7.0 of this residue is about 0.9 mol H^+/kg solid.Meanwhile,the Fe-,Al-,and Si-containing minerals in bauxite residue resulted in an active surface;The isoelectric point(IEP)and point of zero charge(PZC)were 7.88 and 7.65,respectively.This also leads to a fact that most of the metals in bauxite residue were adsorbed by these surface charged solids,which makes the metals not readily move under natural or even moderately acidic conditions.The leaching behavior of metals as a function of pH indicated that the metals in bauxite residue present low release concentrations(pH>3).展开更多
Surface charges greatly affect the discharge/flashover development process across an insulator. The relationship between surface charge distribution on insulating materials and measurement data based on Pockels techni...Surface charges greatly affect the discharge/flashover development process across an insulator. The relationship between surface charge distribution on insulating materials and measurement data based on Pockels technique is discussed, and an improved algorithm is built to calculate the real surface charge density from original data. In this algorithm, two-dimensional Fourier transform technique and Wiener filter are employed to reduce the amount of numerical calculation and improve the stability of computation, Moreover, this algorithm considers not only the influence of sample's thickness and permittivity, but also the impact of charges at different positions. The achievement of this calibration algorithm is demonstrated in details. Compared with traditional algorithms, the improved one supplies a better solution in the calibration of surface charge distribution on different samples with different thickness.展开更多
The effects of the cell parameter and chemical composition on the surface charge properties of five kinds of different colour montmorillonites were studied. The results indicate that the surface isoelectric point(IEP...The effects of the cell parameter and chemical composition on the surface charge properties of five kinds of different colour montmorillonites were studied. The results indicate that the surface isoelectric point(IEP) of the montmorillonite shows positive correlation with the mass fractions of Fe203 and K20, but it has little relation to the mass fractions of other chemical compositions. At around pH=6.8, the surface zeta potential of the montmorillonite shows the negative relationship with the mass fractions of Fe203 and MgO, but it does not linearly correlate to the mass fractions of other chemical compositions. Cell parameter(bo) of the montmorillonite expresses negative linear relationship with mass fractions of K2O and Na2O, so does cosinβ with mass fractions of SlOE and Fe2O3. And there is no specific relationship between bo and IEP of different montmorillonites, but there is positive correlation between cosinβ and IEP of different montmorillonite samples.展开更多
Surface charges and hydration are predominant properties of colloidal particles that govern colloidal stability in aqueous suspensions.These properties usually coexist and interact with each other.The correlation betw...Surface charges and hydration are predominant properties of colloidal particles that govern colloidal stability in aqueous suspensions.These properties usually coexist and interact with each other.The correlation between the surface charge and hydration of minerals is summarized on the basis of innovative experimental,theoretical,and molecular dynamics simulation studies.The factors affecting the adsorption behavior of ions and water molecules,such as ion concentration,ion hydration radius and valence,and surface properties,are discussed.For example,the hydration and adsorption states completely differ between monovalent and divalent ions.For ions of the same valence,the effect of surface charge on the hydration force follows the Hofmeister adsorption series.Electrolyte concentration exerts a significant effect on the hydration force at high ion concentrations.Meanwhile,the ion correlations in high-concentration electrolyte systems become long range.The interfacial water structure largely depends on surface chemistry.The hydration layer between different surfaces shows large qualitative differences.展开更多
The relationship between iron oxides and surface charge characteristics in variable charge soils ( latosol and red earth ) was studied in following three ways. ( 1 ) Remove free iron oxides ( Fed ) and amorphous iron ...The relationship between iron oxides and surface charge characteristics in variable charge soils ( latosol and red earth ) was studied in following three ways. ( 1 ) Remove free iron oxides ( Fed ) and amorphous iron oxides ( Feo ) from the soils with sodium dithionite and acid ammonium oxalate solution respectively. ( 2 ) Add 2% glucose ( on the basis of air-dry soil weight ) to soils and incubate under submerged condition to activate iron oxides, and then the mixtures are dehydrated and air-dried to age iron oxides. ( 3 ) Precipitate various crystalline forms of iron oxides onto kaolinite. The results showed that free iron oxides ( Fed ) were the chief carrier of variable positive charges. Of which crystalline iron oxides ( Fed-Feo ) presented mainly as discrete particles in the soils and could only play a role of the carrier of positive charges, and did little influence on negative charges. Whereas the amorphous iron oxides ( Feo ) , which presented mainly as a coating with a large specific surface area, not only had positive charges, but also blocked the negative charge sites in soils. Submerged incubation activated iron oxides in the soils, and increased the amount of amorphous iron oxides and the degree of activation of iron oxide, which resulted in the increase of positive and negative charges of soils. Dehydration and air-dry aged iron oxides in soils and decreased the amount of amorphous iron oxides and the degree of activation of iron oxide, and also led to the decrease of positive and negative charges. Both the submerged incubation and the dehydration and air-dry had no significant influence on net charges. Precipitation of iron oxides onto kaolinite markedly increased positive charges and decreased negative charges. Amorphous iron oxide having a larger surface area contributed more positive charge sites and blocked more negative charge sites in kaolinite than crystalline goethite.展开更多
The ion flow field on the ground is one of the significant parameters used to evaluate the electromagnetic environment of high voltage direct current(HVDC) power lines.HVDC lines may cross the greenhouses due to the...The ion flow field on the ground is one of the significant parameters used to evaluate the electromagnetic environment of high voltage direct current(HVDC) power lines.HVDC lines may cross the greenhouses due to the restricted transmission corridors.Under the condition of ion flow field,the dielectric films on the greenhouses will be charged,and the electric fields in the greenhouses may exceed the limit value.Field mills are widely used to measure the groundlevel direct current electric fields under the HVDC power lines.In this paper,the charge inversion method is applied to calculate the surface charges on the dielectric film according to the measured ground-level electric fields.The advantages of hiding the field mill probes in the ground are studied.The charge inversion algorithm is optimized in order to decrease the impact of measurement errors.Based on the experimental results,the surface charge distribution on a piece of quadrate dielectric film under a HVDC corona wire is studied.The enhanced effect of dielectric film on ground-level electric field is obviously weakened with the increase of film height.Compared with the total electric field strengths,the normal components of film-free electric fields at the corresponding film-placed positions have a higher effect on surface charge accumulation.展开更多
Biodegradable polymeric materials are the most common carriers for use in drug delivery systems. With this trend, newer drug delivery systems using targeted and controlled release polymeric nanoparticles (NPs) are bei...Biodegradable polymeric materials are the most common carriers for use in drug delivery systems. With this trend, newer drug delivery systems using targeted and controlled release polymeric nanoparticles (NPs) are being developed to manipulate their navigation in complex in vivo environment. However, a clear understanding of the interactions between biological systems and these nanoparticulates is still unexplored. Different studies have been performed to correlate the physicochemical properties of polymeric NPs with the biological responses. Size and surface charge are the two fundamental physicochemical properties that provide a key direction to design an effective NP formulation. In this critical review, our goal is to provide a brief overview on the influences of size and surface charge of different polymeric NPs in vitro and to highlight the challenges involved with in vivo trials.展开更多
Pathological effects of asbestos are probably dependent on the special surface properties of the fibers, such as surface charge, surface metal ions. The present study was designed to determine whether the pretreatment...Pathological effects of asbestos are probably dependent on the special surface properties of the fibers, such as surface charge, surface metal ions. The present study was designed to determine whether the pretreatment of chrysotile asbestos fibers (CAF) with rare earth compounds (REC) solution can reduce their pathogenicity. The results showed that REC-pretreated CAF induced less nitrogen oxide (NO) production by alveolar macrophages (AM). In addition, the pretreatment lowered the capacity of hemolysis and the methylene blue (MB) adsorption of the native CAF. These findings suggested that the pretreatment of CAF with REC solution reduced the in vitro toxicity of CAF by lessening its surface charges. Nevertheless, the pathogenicity and the carcinogenicity of REC-pretreated CAF in vivo remain to be investigated.展开更多
For converter transformer, AC-DC combined electric field can trigger space charge accumulation on oil-impregnated pressboard interface. The accumulation of space charge on oil-pressboard interface can result in electr...For converter transformer, AC-DC combined electric field can trigger space charge accumulation on oil-impregnated pressboard interface. The accumulation of space charge on oil-pressboard interface can result in electric field distortion, trend to trigger surface discharge of barriers. This paper studied the influence of surface charge on flashover voltage of oil-impregnated pressboard under AC-DC combined electric field. The study finds that the flashover voltage of oil-pressboard interface under negative polarity DC superimposed AC electric field is higher than that.of positive DC superimposed AC voltage to form composite electric field. It was found that homopolar surface charge has been accumulated on the interface of oil-pressboard with positive or negative DC voltage through measuring surface potential by the electrostatic capacitive probe. The surface charge produced electric field in the opposite direction, which weakening the synthetic electric field strength. What's more, under the same conditions, the negative surface charge density oil-pressboard is much larger than the positive.展开更多
Electrocatalytic activity is influenced by the surface charge on the solid catalyst.Conventionally,our attention has been focused on how the surface charge shapes the electric potential and concentration of ionic reac...Electrocatalytic activity is influenced by the surface charge on the solid catalyst.Conventionally,our attention has been focused on how the surface charge shapes the electric potential and concentration of ionic reactant(s)in the local reaction zone.Taking H_(2)O_(2)redox reactions at Pt(111)as a model system,we reveal a peculiar surface charge effect using ab initio molecular dynamics simulations of electrified Pt(111)-water interfaces.In this scenario,the negative surface charge on Pt(111)repels the O-O bond of the reactant(H_(2)O_(2))farther away from the electrode surface.This leads to a higher activation barrier for breaking the O-O bond.Incorporating this microscopic mechanism into a microkinetic-double-layer model,we are able to semi-quantitatively interpret the pH-dependent activity of H_(2)O_(2)redox reactions at Pt(111),especially the anomalously suppressed activity of H_(2)O_(2)reduction with decreasing electrode potential.The relevance of the present surface charge effect is also examined in wider scenarios with different electrolyte cations,solution pHs,crystal facets of the catalyst,and model parameters.In contrast with previous mechanisms focusing on how surface charge influences the local reaction condition at a fixed reaction plane,the present work gives an example in which the location of the reaction plane is adjusted by the surface charge.展开更多
We present the variations of electrical parameters of dielectric barrier discharge(DBD)when the DBD generator is used for the material modification,whereas the relevant physical mechanism is also elaborated.An equival...We present the variations of electrical parameters of dielectric barrier discharge(DBD)when the DBD generator is used for the material modification,whereas the relevant physical mechanism is also elaborated.An equivalent circuit model is applied for a DBD generator working in a filament discharging mode,considering the addition of epoxy resin(EP)as the plasma modified material.The electrical parameters are calculated through the circuit model.The surface conductivity,surface potential decay,trap distributions and surface charge distributions on the EP surface before and after plasma treatments were measured and calculated.It is found that the coverage area of micro-discharge channels on the EP surface is increased with the discharging time under the same applied AC voltage.The results indicate that the plasma modified material could influence the ignition of new filaments in return during the modification process.Moreover,the surface conductivity and density of shallow traps with low trap energy of the EP samples increase after the plasma treatment.The surface charge distributions indicate that the improved surface properties accelerate the movement and redistribution of charge carriers on the EP surface.The variable electrical parameters of discharge are attributed to the redistribution of deposited surface charge on the plasma modified EP sample surface.展开更多
A surface charge measuring system using the capacitive probe method is analysed. The present study shows that the measuring system cannot have a steady-state output and that the error resulting from the finite leakage...A surface charge measuring system using the capacitive probe method is analysed. The present study shows that the measuring system cannot have a steady-state output and that the error resulting from the finite leakage resistance of the measuring system will be accumulated during the measuring process. Based on the theoretical analysis a new type probe with a low charge leakage and high resolution is designed. The surface charge accumulated on the Teflon insulator under a DC voltage is measured using this new probe and some phenomena of the surface charging are reported.展开更多
The solar-driven reduction of CO_(2) into valuable products is a promising method to alleviate global environmental problems and energy crises.However,the low surface charge density limits the photocatalytic conversio...The solar-driven reduction of CO_(2) into valuable products is a promising method to alleviate global environmental problems and energy crises.However,the low surface charge density limits the photocatalytic conversion performance of CO_(2).Herein,a polymeric carbon nitride(PCN)photocatalyst with Zn single atoms(Zn1/CN)was designed and synthesized for CO_(2) photoreduction.The results of the CO_(2) photoreduction studies show that the CO and CH_(4) yields of Zn1/CN increased fivefold,reaching 76.9 and 22.9μmol/(g·h),respectively,in contrast to the unmodified PCN.Ar+plasma-etched X-ray photoelectron spectroscopy and synchrotron radiation-based X-ray absorption fine structure results reveal that Zn single atom is mainly present in the interlayer space of PCN in the Zn–N_(4) configuration.Photoelectrochemical characterizations indicate that the interlayer Zn–N_(4) configuration can amplify light absorption and establish an interlayer charge transfer channel.Light-assisted Kelvin probe force microscopy confirms that more photogenerated electrons are delivered to the catalyst surface through interlayer Zn–N_(4) configuration,which increases its surface charge density.Further,in-situ infrared spectroscopy combined with density functional theory calculation reveals that promoted surface charge density accelerates key intermediates(*COOH)conversion,thus achieving efficient CO_(2) conversion.This work elucidates the role of internal single atoms in catalytic surface reactions,which provides important implications for the design of single-atom catalysts.展开更多
The creations and manipulations of vortexes in ferroelectric materials with external stimuli are expected to be used in the design and fabrication of sensing materials and multifunctional electronic devices.In this wo...The creations and manipulations of vortexes in ferroelectric materials with external stimuli are expected to be used in the design and fabrication of sensing materials and multifunctional electronic devices.In this work,we investigated the surface charge-induced multi-vortex evolution using the phase-field simulations in BiFeO_(3).A combination of domain morphology,polarization distribution and winding number calculation was considered.The results show that vortex and anti-vortex exist simultaneously in pairs,and the total value of winding numbers is always 0.In addition,the minimum distanceΔl between the surface charge regions is 9 nm when the vortex domains are independent of each other.This work provides a reference for the manipulation of ferroelectric vortex induced by surface charges,which lays a theoretical foundation for the design and fabrication of high-density vortex memories.展开更多
基金supported by the National Key R&D Project from the Ministry of Science and Technology,China(2021YFA1201603)NSFC(52073032 and 52192611)the Fundamental Research Funds for the Central Universities.
文摘Triboelectric nanogenerators(TENGs),a type of promising micro/nano energy source,have been arousing tremendous research interest since their inception and have been the subject of many striking developments,including defining the fundamental physical mechanisms,expanding applications in mechanical to electric power conversion and self-powered sensors,etc.TENGs with a superior surface charge density at the interfaces of the electrodes and dielectrics are found to be crucial to the enhancement of the performance of the devices.Here,an overview of recent advances,including material optimization,circuit design,and strategy conjunction,in developing TENGs through surface charge enhancement is presented.In these topics,different strategies are retrospected in terms of charge transport and trapping mechanisms,technical merits,and limitations.Additionally,the current challenges in high-performance TENG research and the perspectives in this field are discussed.
基金funded by the National Key Research and Development Program of China(2018YFA0900702).
文摘Biocatalysis in organic solvents(OSs)has numerous important applications,but native enzymes in OSs often exhibit limited catalytic performance.Herein,we proposed a computation-aided surface charge engineering strategy to improve the catalytic performance of haloalkane dehalogenase DhaA in OSs based on the energetic analysis of substrate binding to the DhaA surface.Several variants with enhanced OS resistance were obtained by replacing negative charged residues on the surface with positive charged residue(Arg).Particularly,a four-substitution variant E16R/E93R/E121R/E257R exhibited the best catalytic performance(five-fold improvement in OS resistance and seven-fold half-life increase in 40%(vol)dimethylsulfoxide).As a result,the overall catalytic performance of the variant could be at least 26 times higher than the wild-type DhaA.Fluorescence spectroscopy and molecular dynamics simulation studies revealed that the residue substitution mainly enhanced OS resistance from four aspects:(a)improved the overall structural stability,(b)increased the hydrophobicity of the local microenvironment around the catalytic triad,(c)enriched the hydrophobic substrate around the enzyme molecule,and(d)lowered the contact frequency between OS molecules and the catalytic triad.Our findings validate that computationaided surface charge engineering is an effective and ingenious rational strategy for tailoring enzyme performance in OSs.
基金supported by National Natural Science Foundation of China (Nos. 51777026 and 11705075)。
文摘The surface charge characteristics in a three-electrode surface dielectric barrier discharge(SDBD)are experimentally investigated based on the Pockels effect of an electro-optical crystal. The actuator is based on the most commonly used SDBD structure for airflow control, with an exposed electrode supplied with sinusoidal AC high voltage, a grounded encapsulated electrode and an additional exposed electrode downstream supplied with DC voltage. The ionic wind velocity and thrust can be significantly improved by increasing DC voltage although the plasma discharge characteristics are virtually unaffected. It is found that the negative charges generated by the discharge of the three-electrode structure accumulate on the dielectric surface significantly further downstream in an AC period compared to the actuator with a two-electrode structure. The negative charges in the downstream region increase as the DC voltage increases.In addition, the DC voltage affects the time required for the positive charge filaments to decay.The positive DC voltage expands the ionic acceleration zone downstream to produce a greater EHD force. The amplitude of the DC voltage affects the electric field on the dielectric surface and is therefore a key factor in the formation of the EHD force. Further research on the surface charge characteristics of a three-electrode structure has been conducted using a pulse power to drive the discharge, and the same conclusions are drawn. This work demonstrates a link between surface charge characteristics and EHD performance of a three-electrode SDBD actuator.
基金the Graduate Student Research Innovation Project of Chongqing(No.CYB22016)National Natural Science Foundation of China(Nos.52237010,52277135,51907011)。
文摘The surface charge accumulation on polymers often leads to surface flashover.Current solutions are mainly based on the introduction of inorganic fillers.The high-cost process and low compatibility remain formidable challenges.Moreover,existing researches on all-organic insulation focus on capturing electrons,contrary to alleviating charge accumulation.Here,an all-organic modification coating was prepared on polystyrene(PS)with the large-scale atmospheric-pressure plasma,which exhibits outperformed function in mitigating surface charge accumulation.The surface charge dissipation rate and surface conductivity are promoted by about 1.37 and 9.45 times,respectively.Simulation and experimental results show that this all-organic modification coating has a smaller electron affinity potential compared with PS.The decrease of electron affinity potential may result in accelerated surface charge decay of PS,which has never been involved in previous works.Moreover,this coating also has good reliability in a repeated surface flashover.This facile and large-scale approach brings up a novel idea for surface charge regulation and the manufacture of advanced dielectric polymers.
基金Project(51174229) supported by the National Natural Science Foundation of China
文摘The electrokinetic behavior and surface dissolution of serpentine mineral were studied through Zeta potential measurements, dissolution experiments and X-ray photoelectron spectroscopy. The results show that serpentine has an iso-electric point (IEP) of 11.9, which is higher than that of other phyllosilicate minerals. Dissolution experiments show that the hydroxyl is easy to dissolve with respect to the magnesium cations in the magnesium oxide octahedral sheet. As a result of hydroxyl dissolution, the magnesium ions are left on serpentine surface, which is responsible for serpentine surface charge. The removal of magnesium ions from serpentine surface by acid leaching results in a decrease of serpentine IEP. Therefore, it has been clearly established that the surface charge developed at the serpentine/aqueous electrical interface is a function of the serpentine surface incongruent dissolution.
文摘Speciation and fractionation of heavy metals in soil subsamples experimentally loaded with Pb, Cd, Cu and Zn in orthogonal design was investigated by sequential extraction, and operationally defined as water soluble and exchangeable(SE), weakly specific adsorbed(WSA), Fe and Mn oxides bound(OX) and organic bound(ORG). The results showed that fractions of heavy metals in the soil subsamples depended on their speciation. About 90% of Cd and 75% of Zn existed in soil subsamples in the SE fraction. Lead and Cu existed in soil subsamples as SE, WSA and OX fractions simultaneously, although SE was still the major fraction. Organic bound heavy metals were not clearly apparent in all the soil subsamples. The concentration of some heavy metal fractions in soil subsamples showed the good correlation with ionic impulsion of soil, especially for the SE fraction. Continuous saturation of soil subsamples with 0.20 mol/L NH 4Cl, which is the first step for determination of the negative surface charge of soil by the ion retention method, resulted in desorption of certain heavy metals from the soil. It was found that the percentage desorption of heavy metals from soil subsamples depended greatly on pH, the composition and original heavy metal content of the soil subsamples. However, most of the heavy metals in the soil subsamples were still be retained after multiple saturation. Compared with the parent soil, the negative surface charge of soil subsamples loaded with heavy metals did not show difference significantly from that of the parent one by statistical analysis. Heavy metals existed in the soil subsamples mainly as exchangeable and precipitated simultaneously.
基金Projects(41501350,41461071,31860170)supported by the National Natural Science Foundation of China
文摘A detailed understanding of the composition,buffering capacity,surface charge property,and metals leaching behavior of bauxite residue is the key to improved management,both in reducing the environmental impact and using the material as an industrial by-product for other applications.In this study,physical,chemical,and surface charge properties of bauxite residue derived from a combined process were investigated.Results indicated that the main alkaline solids in bauxite residue were katoite,sodalite,and calcite.These minerals also lead to a higher acid neutralizing capacity of bauxite residue.Acid neutralizing capacity(ANC)to pH 7.0 of this residue is about 0.9 mol H^+/kg solid.Meanwhile,the Fe-,Al-,and Si-containing minerals in bauxite residue resulted in an active surface;The isoelectric point(IEP)and point of zero charge(PZC)were 7.88 and 7.65,respectively.This also leads to a fact that most of the metals in bauxite residue were adsorbed by these surface charged solids,which makes the metals not readily move under natural or even moderately acidic conditions.The leaching behavior of metals as a function of pH indicated that the metals in bauxite residue present low release concentrations(pH>3).
基金supported in part by National Natural Science Foundation of China(Nos.50937004,50777051)
文摘Surface charges greatly affect the discharge/flashover development process across an insulator. The relationship between surface charge distribution on insulating materials and measurement data based on Pockels technique is discussed, and an improved algorithm is built to calculate the real surface charge density from original data. In this algorithm, two-dimensional Fourier transform technique and Wiener filter are employed to reduce the amount of numerical calculation and improve the stability of computation, Moreover, this algorithm considers not only the influence of sample's thickness and permittivity, but also the impact of charges at different positions. The achievement of this calibration algorithm is demonstrated in details. Compared with traditional algorithms, the improved one supplies a better solution in the calibration of surface charge distribution on different samples with different thickness.
基金Project(2005CB623701) supported by the Major State Basic Research Development Program of China
文摘The effects of the cell parameter and chemical composition on the surface charge properties of five kinds of different colour montmorillonites were studied. The results indicate that the surface isoelectric point(IEP) of the montmorillonite shows positive correlation with the mass fractions of Fe203 and K20, but it has little relation to the mass fractions of other chemical compositions. At around pH=6.8, the surface zeta potential of the montmorillonite shows the negative relationship with the mass fractions of Fe203 and MgO, but it does not linearly correlate to the mass fractions of other chemical compositions. Cell parameter(bo) of the montmorillonite expresses negative linear relationship with mass fractions of K2O and Na2O, so does cosinβ with mass fractions of SlOE and Fe2O3. And there is no specific relationship between bo and IEP of different montmorillonites, but there is positive correlation between cosinβ and IEP of different montmorillonite samples.
基金financially supported by the National Natural Science Foundation of China(Nos.51804213,51820105006,51474167,51674183,and 51674174)the China Scholarships Council(No.201906935041)。
文摘Surface charges and hydration are predominant properties of colloidal particles that govern colloidal stability in aqueous suspensions.These properties usually coexist and interact with each other.The correlation between the surface charge and hydration of minerals is summarized on the basis of innovative experimental,theoretical,and molecular dynamics simulation studies.The factors affecting the adsorption behavior of ions and water molecules,such as ion concentration,ion hydration radius and valence,and surface properties,are discussed.For example,the hydration and adsorption states completely differ between monovalent and divalent ions.For ions of the same valence,the effect of surface charge on the hydration force follows the Hofmeister adsorption series.Electrolyte concentration exerts a significant effect on the hydration force at high ion concentrations.Meanwhile,the ion correlations in high-concentration electrolyte systems become long range.The interfacial water structure largely depends on surface chemistry.The hydration layer between different surfaces shows large qualitative differences.
文摘The relationship between iron oxides and surface charge characteristics in variable charge soils ( latosol and red earth ) was studied in following three ways. ( 1 ) Remove free iron oxides ( Fed ) and amorphous iron oxides ( Feo ) from the soils with sodium dithionite and acid ammonium oxalate solution respectively. ( 2 ) Add 2% glucose ( on the basis of air-dry soil weight ) to soils and incubate under submerged condition to activate iron oxides, and then the mixtures are dehydrated and air-dried to age iron oxides. ( 3 ) Precipitate various crystalline forms of iron oxides onto kaolinite. The results showed that free iron oxides ( Fed ) were the chief carrier of variable positive charges. Of which crystalline iron oxides ( Fed-Feo ) presented mainly as discrete particles in the soils and could only play a role of the carrier of positive charges, and did little influence on negative charges. Whereas the amorphous iron oxides ( Feo ) , which presented mainly as a coating with a large specific surface area, not only had positive charges, but also blocked the negative charge sites in soils. Submerged incubation activated iron oxides in the soils, and increased the amount of amorphous iron oxides and the degree of activation of iron oxide, which resulted in the increase of positive and negative charges of soils. Dehydration and air-dry aged iron oxides in soils and decreased the amount of amorphous iron oxides and the degree of activation of iron oxide, and also led to the decrease of positive and negative charges. Both the submerged incubation and the dehydration and air-dry had no significant influence on net charges. Precipitation of iron oxides onto kaolinite markedly increased positive charges and decreased negative charges. Amorphous iron oxide having a larger surface area contributed more positive charge sites and blocked more negative charge sites in kaolinite than crystalline goethite.
基金supported by the National Key Research and Development Program(Grant No.2016YFB0900900)National Natural Science Foundation of China(Grant No.51577064)
文摘The ion flow field on the ground is one of the significant parameters used to evaluate the electromagnetic environment of high voltage direct current(HVDC) power lines.HVDC lines may cross the greenhouses due to the restricted transmission corridors.Under the condition of ion flow field,the dielectric films on the greenhouses will be charged,and the electric fields in the greenhouses may exceed the limit value.Field mills are widely used to measure the groundlevel direct current electric fields under the HVDC power lines.In this paper,the charge inversion method is applied to calculate the surface charges on the dielectric film according to the measured ground-level electric fields.The advantages of hiding the field mill probes in the ground are studied.The charge inversion algorithm is optimized in order to decrease the impact of measurement errors.Based on the experimental results,the surface charge distribution on a piece of quadrate dielectric film under a HVDC corona wire is studied.The enhanced effect of dielectric film on ground-level electric field is obviously weakened with the increase of film height.Compared with the total electric field strengths,the normal components of film-free electric fields at the corresponding film-placed positions have a higher effect on surface charge accumulation.
文摘Biodegradable polymeric materials are the most common carriers for use in drug delivery systems. With this trend, newer drug delivery systems using targeted and controlled release polymeric nanoparticles (NPs) are being developed to manipulate their navigation in complex in vivo environment. However, a clear understanding of the interactions between biological systems and these nanoparticulates is still unexplored. Different studies have been performed to correlate the physicochemical properties of polymeric NPs with the biological responses. Size and surface charge are the two fundamental physicochemical properties that provide a key direction to design an effective NP formulation. In this critical review, our goal is to provide a brief overview on the influences of size and surface charge of different polymeric NPs in vitro and to highlight the challenges involved with in vivo trials.
文摘Pathological effects of asbestos are probably dependent on the special surface properties of the fibers, such as surface charge, surface metal ions. The present study was designed to determine whether the pretreatment of chrysotile asbestos fibers (CAF) with rare earth compounds (REC) solution can reduce their pathogenicity. The results showed that REC-pretreated CAF induced less nitrogen oxide (NO) production by alveolar macrophages (AM). In addition, the pretreatment lowered the capacity of hemolysis and the methylene blue (MB) adsorption of the native CAF. These findings suggested that the pretreatment of CAF with REC solution reduced the in vitro toxicity of CAF by lessening its surface charges. Nevertheless, the pathogenicity and the carcinogenicity of REC-pretreated CAF in vivo remain to be investigated.
文摘For converter transformer, AC-DC combined electric field can trigger space charge accumulation on oil-impregnated pressboard interface. The accumulation of space charge on oil-pressboard interface can result in electric field distortion, trend to trigger surface discharge of barriers. This paper studied the influence of surface charge on flashover voltage of oil-impregnated pressboard under AC-DC combined electric field. The study finds that the flashover voltage of oil-pressboard interface under negative polarity DC superimposed AC electric field is higher than that.of positive DC superimposed AC voltage to form composite electric field. It was found that homopolar surface charge has been accumulated on the interface of oil-pressboard with positive or negative DC voltage through measuring surface potential by the electrostatic capacitive probe. The surface charge produced electric field in the opposite direction, which weakening the synthetic electric field strength. What's more, under the same conditions, the negative surface charge density oil-pressboard is much larger than the positive.
文摘Electrocatalytic activity is influenced by the surface charge on the solid catalyst.Conventionally,our attention has been focused on how the surface charge shapes the electric potential and concentration of ionic reactant(s)in the local reaction zone.Taking H_(2)O_(2)redox reactions at Pt(111)as a model system,we reveal a peculiar surface charge effect using ab initio molecular dynamics simulations of electrified Pt(111)-water interfaces.In this scenario,the negative surface charge on Pt(111)repels the O-O bond of the reactant(H_(2)O_(2))farther away from the electrode surface.This leads to a higher activation barrier for breaking the O-O bond.Incorporating this microscopic mechanism into a microkinetic-double-layer model,we are able to semi-quantitatively interpret the pH-dependent activity of H_(2)O_(2)redox reactions at Pt(111),especially the anomalously suppressed activity of H_(2)O_(2)reduction with decreasing electrode potential.The relevance of the present surface charge effect is also examined in wider scenarios with different electrolyte cations,solution pHs,crystal facets of the catalyst,and model parameters.In contrast with previous mechanisms focusing on how surface charge influences the local reaction condition at a fixed reaction plane,the present work gives an example in which the location of the reaction plane is adjusted by the surface charge.
基金Project supported by the National Key R&D Program of China(Grant No.2018YFB0904400)the National Natural Science Foundation of China(Grant No.51977187)+3 种基金the“Science and Technology Innovation 2025”Key Project of Ningbo City,China(Grant No.2018B10019)the Natural Science Foundation of Zhejiang Province,China(Grant No.LY18E070003)the State Key Laboratory of HVDC,Electric Power Research Institute,China Southern Power Grid(Grant No.SKLHVDC-2019-KF-18)the Fundamental Research Funds for the Central Universities,China(Grant No.2018QNA4017).
文摘We present the variations of electrical parameters of dielectric barrier discharge(DBD)when the DBD generator is used for the material modification,whereas the relevant physical mechanism is also elaborated.An equivalent circuit model is applied for a DBD generator working in a filament discharging mode,considering the addition of epoxy resin(EP)as the plasma modified material.The electrical parameters are calculated through the circuit model.The surface conductivity,surface potential decay,trap distributions and surface charge distributions on the EP surface before and after plasma treatments were measured and calculated.It is found that the coverage area of micro-discharge channels on the EP surface is increased with the discharging time under the same applied AC voltage.The results indicate that the plasma modified material could influence the ignition of new filaments in return during the modification process.Moreover,the surface conductivity and density of shallow traps with low trap energy of the EP samples increase after the plasma treatment.The surface charge distributions indicate that the improved surface properties accelerate the movement and redistribution of charge carriers on the EP surface.The variable electrical parameters of discharge are attributed to the redistribution of deposited surface charge on the plasma modified EP sample surface.
基金supported by Science Foundation of Hunan University
文摘A surface charge measuring system using the capacitive probe method is analysed. The present study shows that the measuring system cannot have a steady-state output and that the error resulting from the finite leakage resistance of the measuring system will be accumulated during the measuring process. Based on the theoretical analysis a new type probe with a low charge leakage and high resolution is designed. The surface charge accumulated on the Teflon insulator under a DC voltage is measured using this new probe and some phenomena of the surface charging are reported.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences,China(Nos.XDA23010300 and XDA23010000)the National Natural Science Foundation of China(Nos.51878644 and 41573138)the CAS Youth Interdisciplinary Team.
文摘The solar-driven reduction of CO_(2) into valuable products is a promising method to alleviate global environmental problems and energy crises.However,the low surface charge density limits the photocatalytic conversion performance of CO_(2).Herein,a polymeric carbon nitride(PCN)photocatalyst with Zn single atoms(Zn1/CN)was designed and synthesized for CO_(2) photoreduction.The results of the CO_(2) photoreduction studies show that the CO and CH_(4) yields of Zn1/CN increased fivefold,reaching 76.9 and 22.9μmol/(g·h),respectively,in contrast to the unmodified PCN.Ar+plasma-etched X-ray photoelectron spectroscopy and synchrotron radiation-based X-ray absorption fine structure results reveal that Zn single atom is mainly present in the interlayer space of PCN in the Zn–N_(4) configuration.Photoelectrochemical characterizations indicate that the interlayer Zn–N_(4) configuration can amplify light absorption and establish an interlayer charge transfer channel.Light-assisted Kelvin probe force microscopy confirms that more photogenerated electrons are delivered to the catalyst surface through interlayer Zn–N_(4) configuration,which increases its surface charge density.Further,in-situ infrared spectroscopy combined with density functional theory calculation reveals that promoted surface charge density accelerates key intermediates(*COOH)conversion,thus achieving efficient CO_(2) conversion.This work elucidates the role of internal single atoms in catalytic surface reactions,which provides important implications for the design of single-atom catalysts.
基金supported financially by the National Key Research and Development Program of China(Grant No.2019YFA0307900),the National Natural Science Foundation of China(Grant Nos.51972028 and 12004036)and the China Postdoctoral Science Foundation(Grant No.2020M680375).This project is also supported by Young Elite Scientists Sponsorship Program by BAST(No.BYFSS2023072)State Key Laboratory of New Ceramic and Fine Processing Tsinghua University(No.KFZD202201).
文摘The creations and manipulations of vortexes in ferroelectric materials with external stimuli are expected to be used in the design and fabrication of sensing materials and multifunctional electronic devices.In this work,we investigated the surface charge-induced multi-vortex evolution using the phase-field simulations in BiFeO_(3).A combination of domain morphology,polarization distribution and winding number calculation was considered.The results show that vortex and anti-vortex exist simultaneously in pairs,and the total value of winding numbers is always 0.In addition,the minimum distanceΔl between the surface charge regions is 9 nm when the vortex domains are independent of each other.This work provides a reference for the manipulation of ferroelectric vortex induced by surface charges,which lays a theoretical foundation for the design and fabrication of high-density vortex memories.