In this Letter, we demonstrate a linear polarization conversion of transmitted terahertz wave with double-layer meta-grating surfaces, which integrated the frequency selectivity of a split ring resonator metasurface a...In this Letter, we demonstrate a linear polarization conversion of transmitted terahertz wave with double-layer meta-grating surfaces, which integrated the frequency selectivity of a split ring resonator metasurface and the polarization selectivity of a metallic grating surface. Since the double-layer can reduce the loss, and the Fabry- Perot like resonant effect between the two layers can improve the conversion efficiency, this converter can rotate the incident y-polarized terahertz wave into an x-polarized transmitted wave with relatively low loss and high efficiency. Experimental results show that an average conversion efficiency exceeding 75% from 0.25 to 0.65 THz with the highest efficiency of 90% at 0.43 THz with onlv -2 dB loss has been achieved.展开更多
We reported a facile and bio-inspired strategy for obtaining antireflective (AR) coating through polymerization-induced self-wrinkling. Upon irradiation of light, the complex wrinkle micro-patterns with different mo...We reported a facile and bio-inspired strategy for obtaining antireflective (AR) coating through polymerization-induced self-wrinkling. Upon irradiation of light, the complex wrinkle micro-patterns with different morphologies were generated spontaneously on the surface of coating during photo-cross- linking, which enables the photo-curing coating can decrease reflection. The resulting photo-curing coating exhibits a high transmittance over 90% and low reflection below 5% ~ 8%, with an efficiency anti- reflection of 4% ~ 7%; compared to the flat blank coating. The successful application of these AR coatings with wrinkles pattern to encapsulate the thin film solar cells results in appreciable photovoltaic performance improvement of more than 4% ~ 8%, which benefits from the decrease of the light reflection and increase of optical paths in the photoactive layer by the introduction of wrinkling pattern. Furthermore, the efficiency improvements of the solar cells are more obvious, with a remarkable increase of 8.5%, at oblique light incident angle than that with vertical light incident angle展开更多
基金supported by the National Natural Science Foundation of China(Nos.61531010,61270011,91438118,and 61501094)the National Key Basic Research Program of China(No.2014CB339806)
文摘In this Letter, we demonstrate a linear polarization conversion of transmitted terahertz wave with double-layer meta-grating surfaces, which integrated the frequency selectivity of a split ring resonator metasurface and the polarization selectivity of a metallic grating surface. Since the double-layer can reduce the loss, and the Fabry- Perot like resonant effect between the two layers can improve the conversion efficiency, this converter can rotate the incident y-polarized terahertz wave into an x-polarized transmitted wave with relatively low loss and high efficiency. Experimental results show that an average conversion efficiency exceeding 75% from 0.25 to 0.65 THz with the highest efficiency of 90% at 0.43 THz with onlv -2 dB loss has been achieved.
基金the National Natural Science Foundation of China (Nos. 21522403, 51373098)the National Basic Research Program (No. 2013CB834506)+1 种基金Education Commission of Shanghai Municipal Government (No. 15SG13)IFPM 2016B002 of Shanghai Jiao Tong University & Affiliated Sixth People’s Hospital South Campus for their financial support
文摘We reported a facile and bio-inspired strategy for obtaining antireflective (AR) coating through polymerization-induced self-wrinkling. Upon irradiation of light, the complex wrinkle micro-patterns with different morphologies were generated spontaneously on the surface of coating during photo-cross- linking, which enables the photo-curing coating can decrease reflection. The resulting photo-curing coating exhibits a high transmittance over 90% and low reflection below 5% ~ 8%, with an efficiency anti- reflection of 4% ~ 7%; compared to the flat blank coating. The successful application of these AR coatings with wrinkles pattern to encapsulate the thin film solar cells results in appreciable photovoltaic performance improvement of more than 4% ~ 8%, which benefits from the decrease of the light reflection and increase of optical paths in the photoactive layer by the introduction of wrinkling pattern. Furthermore, the efficiency improvements of the solar cells are more obvious, with a remarkable increase of 8.5%, at oblique light incident angle than that with vertical light incident angle