Surface depletion field would introduce the depletion region near surface and thus could significantly alter the optical,electronic and optoelectronic properties of the materials,especially low-dimensional materials.T...Surface depletion field would introduce the depletion region near surface and thus could significantly alter the optical,electronic and optoelectronic properties of the materials,especially low-dimensional materials.Two-dimensional(2D)organic—inorganic hybrid perovskites with van der Waals bonds in the out-of-plane direction are expected to have less influence from the surface depletion field;nevertheless,studies on this remain elusive.Here we report on how the surface depletion field affects the structural phase transition,quantum confinement and Stark effect in 2D(BA)2PbI4 perovskite microplates by the thickness-,temperature-and power-dependent photoluminescence(PL)spectroscopy.Power dependent PL studies suggest that high-temperature phase(HTP)and low-temperature phase(LTP)can coexist in a wider temperature range depending on the thickness of the 2D perovskite microplates.With the decrease of the microplate thickness,the structural phase transition temperature first gradually decreases and then increases below 25 nm,in striking contrast to the conventional size dependent structural phase transition.Based on the thickness evolution of the emission peaks for both high-temperature phase and low-temperature phase,the anomalous size dependent phase transition could probably be ascribed to the surface depletion field and the surface energy difference between polymorphs.This explanation was further supported by the temperature dependent PL studies of the suspended microplates and encapsulated microplates with graphene and boron nitride flakes.Along with the thickness dependent phase transition,the emission energies of free excitons for both HTP and LTP with thickness can be ascribed to the surface depletion induced confinement and Stark effect.展开更多
The space-charge layer (SCL) and surface depletion area (SDA) model for beveled p-n junction is presented. The surface space-charge density is calculated for depletion case of beveled p-n junction. Based on the fi...The space-charge layer (SCL) and surface depletion area (SDA) model for beveled p-n junction is presented. The surface space-charge density is calculated for depletion case of beveled p-n junction. Based on the finite difference method, the effect of the equivalent surface charge density on the surface depletion area for positively beveled p-n junction is also studied. Thyristors passivated with polyimide (PI) or polyester improved silicon paint (SP) are fabricated to verify the effect of equivalent surface charge on the peripheral surface of beveled p-n junction. The change of leakage current is sensitive to the surface charges. It indicates that the selection of passivation materials is a significant process to ensure the breakdown voltage capability of beveled devices.展开更多
The optoelectronic performances of the layered materials are strongly dependent on the thickness of the samples due to the surface effect.As the size of the samples decreases to few nanometers,the surface depletion fi...The optoelectronic performances of the layered materials are strongly dependent on the thickness of the samples due to the surface effect.As the size of the samples decreases to few nanometers,the surface depletion field and surface defect density are prominent arising from the large surface to volume ratio.For instance,thin two-dimensional(2D)organic-inorganic hybrid perovskite microplates usually exhibit a rather low photoluminescence quantum yield(PLQY),owning to the strong surface effect.Here,we report that the PLQY can be enhanced as large as 28 times in(iso-BA)2Pbl4(BA=C4H9NH3)2D perovskite thin microplates encapsulated by graphene,resulting in that the PLQY is more than 18%for the microplate with a thickness of 6.7 nm at 78 K.As the thickness of the 2D perovskite microplate increases,the enhancement is gradually reduced and finally vanishes.This observation is in striking contrast to that in monolayer transition metal dichalcogenides(TMDs),when the PLQY is quenched by covering a layer of graphene due to the efficient charge transfer.The enhancement of PLQY in 2D perovskites can be mainly ascribed to the reduced quantum confined Stark effect(QCSE)due to the reduced surface depletion field after covering graphene flake,resulting in the enhanced radiative recombination efficiency.Our findings provide a cost-effective approach to enhance the luminescence,which may pave the way toward high performance light emitting devices based on 2D perovskites.展开更多
基金D.H.L.acknowledges support from the National Natural Science Foundation of China(No.61674060)Innovation Fund of WNLO and the Fundamental Research Funds for the Central Universities,HUST(Nos.2017KFYXJJ030,2017KFXKJC003,2017KFXKJC002,and 2018KFYXKJC016)H.M.L.is grateful for support from New Mexico EPSCoR with NSF-1301346.We thank Testing Center of Huazhong University of Science and Technology for the support in inductively coupled plasma etching.
文摘Surface depletion field would introduce the depletion region near surface and thus could significantly alter the optical,electronic and optoelectronic properties of the materials,especially low-dimensional materials.Two-dimensional(2D)organic—inorganic hybrid perovskites with van der Waals bonds in the out-of-plane direction are expected to have less influence from the surface depletion field;nevertheless,studies on this remain elusive.Here we report on how the surface depletion field affects the structural phase transition,quantum confinement and Stark effect in 2D(BA)2PbI4 perovskite microplates by the thickness-,temperature-and power-dependent photoluminescence(PL)spectroscopy.Power dependent PL studies suggest that high-temperature phase(HTP)and low-temperature phase(LTP)can coexist in a wider temperature range depending on the thickness of the 2D perovskite microplates.With the decrease of the microplate thickness,the structural phase transition temperature first gradually decreases and then increases below 25 nm,in striking contrast to the conventional size dependent structural phase transition.Based on the thickness evolution of the emission peaks for both high-temperature phase and low-temperature phase,the anomalous size dependent phase transition could probably be ascribed to the surface depletion field and the surface energy difference between polymorphs.This explanation was further supported by the temperature dependent PL studies of the suspended microplates and encapsulated microplates with graphene and boron nitride flakes.Along with the thickness dependent phase transition,the emission energies of free excitons for both HTP and LTP with thickness can be ascribed to the surface depletion induced confinement and Stark effect.
基金Project supported by the National Natural Science Foundation of China (Grant No.60036010)
文摘The space-charge layer (SCL) and surface depletion area (SDA) model for beveled p-n junction is presented. The surface space-charge density is calculated for depletion case of beveled p-n junction. Based on the finite difference method, the effect of the equivalent surface charge density on the surface depletion area for positively beveled p-n junction is also studied. Thyristors passivated with polyimide (PI) or polyester improved silicon paint (SP) are fabricated to verify the effect of equivalent surface charge on the peripheral surface of beveled p-n junction. The change of leakage current is sensitive to the surface charges. It indicates that the selection of passivation materials is a significant process to ensure the breakdown voltage capability of beveled devices.
基金the support from the National Basic Research Program of China(No.2018YFA0704403)the National Natural Science Foundation of China(No.61674060)。
文摘The optoelectronic performances of the layered materials are strongly dependent on the thickness of the samples due to the surface effect.As the size of the samples decreases to few nanometers,the surface depletion field and surface defect density are prominent arising from the large surface to volume ratio.For instance,thin two-dimensional(2D)organic-inorganic hybrid perovskite microplates usually exhibit a rather low photoluminescence quantum yield(PLQY),owning to the strong surface effect.Here,we report that the PLQY can be enhanced as large as 28 times in(iso-BA)2Pbl4(BA=C4H9NH3)2D perovskite thin microplates encapsulated by graphene,resulting in that the PLQY is more than 18%for the microplate with a thickness of 6.7 nm at 78 K.As the thickness of the 2D perovskite microplate increases,the enhancement is gradually reduced and finally vanishes.This observation is in striking contrast to that in monolayer transition metal dichalcogenides(TMDs),when the PLQY is quenched by covering a layer of graphene due to the efficient charge transfer.The enhancement of PLQY in 2D perovskites can be mainly ascribed to the reduced quantum confined Stark effect(QCSE)due to the reduced surface depletion field after covering graphene flake,resulting in the enhanced radiative recombination efficiency.Our findings provide a cost-effective approach to enhance the luminescence,which may pave the way toward high performance light emitting devices based on 2D perovskites.