Photoelectrochemical(PEC)water splitting is one of the most promising approaches toward achieving the conversion of solar energy to hydrogen.Hematite is a widely applied photoanode material in PEC water splitting beca...Photoelectrochemical(PEC)water splitting is one of the most promising approaches toward achieving the conversion of solar energy to hydrogen.Hematite is a widely applied photoanode material in PEC water splitting because of its appropriate band structure,non-toxicity,high stability,and low cost.Nevertheless,its relatively low photochemical conversion efficiency limits its application,and enhancing its PEC water splitting efficiency remains a challenge.Consequently,increasing efforts have been rendered toward improving the performance of hematite photoanodes.The entire PEC water splitting efficiency typically includes three parts:the photon absorption efficiency,the separation efficiency of the semiconductor bulk,and the surface injection efficiency.This review briefly discusses the recent advances in studies on hematite photoanodes for water splitting,and through the enhancement of the three above-mentioned efficiencies,the corresponding strategies toward improving the PEC performance of hematite are comprehensively discussed and summarized.展开更多
Surface sediments can integrate a wide variety of information of seawater in marginal seas, e.g., the Quaternary sedimentary shelf such as the East China Sea(ECS) and Yellow Sea(YS). The Tessier and BCR sequential...Surface sediments can integrate a wide variety of information of seawater in marginal seas, e.g., the Quaternary sedimentary shelf such as the East China Sea(ECS) and Yellow Sea(YS). The Tessier and BCR sequential extraction procedures(SEPs) have been widely applied for extraction of various geochemical phases from sediments. To choose a suitable SEP for phase extraction of sediments from the above Quaternary sedimentary shelf, efficiency and selectivity experiments were conducted on typical individual minerals and the applicability of each SEP was assessed for natural sediments(the natural sediment standard GSD-9 and three surface sediment samples). The geochemical represented elements(Ca, Fe, Mn, Al, and Ti) were measured using both SEPs. Both SEPs have good dissolution efficiency and selectivity for the targeted geochemical phases; the optimized extractant volume for each fraction was determined. The Tessier SEP is particularly recommended for the study of adsorption-desorption process. The application of the Tessier SEP to surface sediments can furnish valuable information, including the productivity conditions(via the reducible fraction Mn) and sedimentary environments(via the carbonate fraction Ca). These results confirm that the Tessier SEP is suitable for elemental fractionation in sediments from the Chinese continental shelf.展开更多
Surface junctions between Bi OBr and BiVO4 were synthesized. The BiOBr/BiVO4 with 1 wt.%of Bi OBr exhibited the highest photocatalytic activity in the degradation of Rh B under visible-light irradiation. It was found ...Surface junctions between Bi OBr and BiVO4 were synthesized. The BiOBr/BiVO4 with 1 wt.%of Bi OBr exhibited the highest photocatalytic activity in the degradation of Rh B under visible-light irradiation. It was found that the highly efficient adsorption of Rh B molecules via the electrostatic attraction between Br-and cationic /N(Et)2 group played a key role for the high photocatalytic activities of BiOBr/BiVO4. This efficient adsorption promoted the N-deethylation of Rh B and thus accelerated the photocatalytic degradation of Rh B.Moreover, the metal-to-metal charge transfer(MMCT) mechanism was proposed, which revealed the concrete path paved with Bi–O–Bi chains for the carrier migration in BiOBr/BiVO4. The interaction between photoexcited Rh B* and the Bi^(3+) in BiVO4 provided the driving force for the migration of photo-generated carriers along the Bi–O–Bi chains. This work has not only demonstrated the important role of efficient adsorption in the photocatalytic degradation of organic contaminants, but also developed a facile strategy to improve the efficiency of photocatalysts.展开更多
The most important grinding processes were realized in a single pass of the grinding wheel,such as continuous path controlled grinding (CPCG/Peelgrinding/HSP),CPCG with reduced contact of the grinding wheel (Quickpoin...The most important grinding processes were realized in a single pass of the grinding wheel,such as continuous path controlled grinding (CPCG/Peelgrinding/HSP),CPCG with reduced contact of the grinding wheel (Quickpoint),single-pass longitudinal internal grinding,creep feed grinding (CFG),longitudinal cylindrical grinding with grinding wheels made of conventional abrasive materials and longitudinal internal cylindrical grinding using grinding wheels with zone-diversified structure.展开更多
n-type CZ-Si wafers featuring longer minority carrier lifetime and higher tolerance of certain metal contamination can offer one of the best Si-based solar cells. In this study, Si heterojuction (SHJ) solar cells wh...n-type CZ-Si wafers featuring longer minority carrier lifetime and higher tolerance of certain metal contamination can offer one of the best Si-based solar cells. In this study, Si heterojuction (SHJ) solar cells which was fabricated with different wafers in the top, middle and tail positions of the ingot, exhibited a stable high efficiency of〉 22% in spite of the various profiles of the resistivity and lifetime, which demonstrated the high material utilization of n-type ingot. In addition, for effectively converting the sunlight into electrical power, the pyramid size, pyramid density and roughness of surface of the Cz-Si wafer were investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM). Furthermore, the dependence of SHJ solar cell open- circuit voltage on the surface topography was discussed, which indicated that the uniformity of surface pyramid helps to improve the open-circuit voltage and conversion efficiency. Moreover, the simulation revealed that the highest efficiency of the SHJ solar cell could be achieved by the wafer with a thickness of 100 μm. Fortunately, over 23% of the conversion efficiency of the SHJ solar cell with a wafer thickness of 100 μm was obtained based on the systematic optimization of cell fabrication process in the pilot production line. Evidently, the large availability of both n-type ingot and thinner wafer strongly supported the lower cost fabrication of high efficiency SHJ solar cell.展开更多
We reported a facile and bio-inspired strategy for obtaining antireflective (AR) coating through polymerization-induced self-wrinkling. Upon irradiation of light, the complex wrinkle micro-patterns with different mo...We reported a facile and bio-inspired strategy for obtaining antireflective (AR) coating through polymerization-induced self-wrinkling. Upon irradiation of light, the complex wrinkle micro-patterns with different morphologies were generated spontaneously on the surface of coating during photo-cross- linking, which enables the photo-curing coating can decrease reflection. The resulting photo-curing coating exhibits a high transmittance over 90% and low reflection below 5% ~ 8%, with an efficiency anti- reflection of 4% ~ 7%; compared to the flat blank coating. The successful application of these AR coatings with wrinkles pattern to encapsulate the thin film solar cells results in appreciable photovoltaic performance improvement of more than 4% ~ 8%, which benefits from the decrease of the light reflection and increase of optical paths in the photoactive layer by the introduction of wrinkling pattern. Furthermore, the efficiency improvements of the solar cells are more obvious, with a remarkable increase of 8.5%, at oblique light incident angle than that with vertical light incident angle展开更多
文摘Photoelectrochemical(PEC)water splitting is one of the most promising approaches toward achieving the conversion of solar energy to hydrogen.Hematite is a widely applied photoanode material in PEC water splitting because of its appropriate band structure,non-toxicity,high stability,and low cost.Nevertheless,its relatively low photochemical conversion efficiency limits its application,and enhancing its PEC water splitting efficiency remains a challenge.Consequently,increasing efforts have been rendered toward improving the performance of hematite photoanodes.The entire PEC water splitting efficiency typically includes three parts:the photon absorption efficiency,the separation efficiency of the semiconductor bulk,and the surface injection efficiency.This review briefly discusses the recent advances in studies on hematite photoanodes for water splitting,and through the enhancement of the three above-mentioned efficiencies,the corresponding strategies toward improving the PEC performance of hematite are comprehensively discussed and summarized.
基金The National Natural Science Foundation of China under contract Nos 41530965,41276071 and 41003052the JSPS KAKENHI Grants under contract Nos JP26241009 and JP15H00973the Central Universities under contract Nos 201562008 and 201762031
文摘Surface sediments can integrate a wide variety of information of seawater in marginal seas, e.g., the Quaternary sedimentary shelf such as the East China Sea(ECS) and Yellow Sea(YS). The Tessier and BCR sequential extraction procedures(SEPs) have been widely applied for extraction of various geochemical phases from sediments. To choose a suitable SEP for phase extraction of sediments from the above Quaternary sedimentary shelf, efficiency and selectivity experiments were conducted on typical individual minerals and the applicability of each SEP was assessed for natural sediments(the natural sediment standard GSD-9 and three surface sediment samples). The geochemical represented elements(Ca, Fe, Mn, Al, and Ti) were measured using both SEPs. Both SEPs have good dissolution efficiency and selectivity for the targeted geochemical phases; the optimized extractant volume for each fraction was determined. The Tessier SEP is particularly recommended for the study of adsorption-desorption process. The application of the Tessier SEP to surface sediments can furnish valuable information, including the productivity conditions(via the reducible fraction Mn) and sedimentary environments(via the carbonate fraction Ca). These results confirm that the Tessier SEP is suitable for elemental fractionation in sediments from the Chinese continental shelf.
基金supported by National Basic Research Program (973) of China (No. 2013CB933200)the National Natural Science Foundation of China (Nos. 21671197, 51472260)the Research Grant (No. 16ZR1440800) from Shanghai Science and Technology Commission
文摘Surface junctions between Bi OBr and BiVO4 were synthesized. The BiOBr/BiVO4 with 1 wt.%of Bi OBr exhibited the highest photocatalytic activity in the degradation of Rh B under visible-light irradiation. It was found that the highly efficient adsorption of Rh B molecules via the electrostatic attraction between Br-and cationic /N(Et)2 group played a key role for the high photocatalytic activities of BiOBr/BiVO4. This efficient adsorption promoted the N-deethylation of Rh B and thus accelerated the photocatalytic degradation of Rh B.Moreover, the metal-to-metal charge transfer(MMCT) mechanism was proposed, which revealed the concrete path paved with Bi–O–Bi chains for the carrier migration in BiOBr/BiVO4. The interaction between photoexcited Rh B* and the Bi^(3+) in BiVO4 provided the driving force for the migration of photo-generated carriers along the Bi–O–Bi chains. This work has not only demonstrated the important role of efficient adsorption in the photocatalytic degradation of organic contaminants, but also developed a facile strategy to improve the efficiency of photocatalysts.
文摘The most important grinding processes were realized in a single pass of the grinding wheel,such as continuous path controlled grinding (CPCG/Peelgrinding/HSP),CPCG with reduced contact of the grinding wheel (Quickpoint),single-pass longitudinal internal grinding,creep feed grinding (CFG),longitudinal cylindrical grinding with grinding wheels made of conventional abrasive materials and longitudinal internal cylindrical grinding using grinding wheels with zone-diversified structure.
文摘n-type CZ-Si wafers featuring longer minority carrier lifetime and higher tolerance of certain metal contamination can offer one of the best Si-based solar cells. In this study, Si heterojuction (SHJ) solar cells which was fabricated with different wafers in the top, middle and tail positions of the ingot, exhibited a stable high efficiency of〉 22% in spite of the various profiles of the resistivity and lifetime, which demonstrated the high material utilization of n-type ingot. In addition, for effectively converting the sunlight into electrical power, the pyramid size, pyramid density and roughness of surface of the Cz-Si wafer were investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM). Furthermore, the dependence of SHJ solar cell open- circuit voltage on the surface topography was discussed, which indicated that the uniformity of surface pyramid helps to improve the open-circuit voltage and conversion efficiency. Moreover, the simulation revealed that the highest efficiency of the SHJ solar cell could be achieved by the wafer with a thickness of 100 μm. Fortunately, over 23% of the conversion efficiency of the SHJ solar cell with a wafer thickness of 100 μm was obtained based on the systematic optimization of cell fabrication process in the pilot production line. Evidently, the large availability of both n-type ingot and thinner wafer strongly supported the lower cost fabrication of high efficiency SHJ solar cell.
基金the National Natural Science Foundation of China (Nos. 21522403, 51373098)the National Basic Research Program (No. 2013CB834506)+1 种基金Education Commission of Shanghai Municipal Government (No. 15SG13)IFPM 2016B002 of Shanghai Jiao Tong University & Affiliated Sixth People’s Hospital South Campus for their financial support
文摘We reported a facile and bio-inspired strategy for obtaining antireflective (AR) coating through polymerization-induced self-wrinkling. Upon irradiation of light, the complex wrinkle micro-patterns with different morphologies were generated spontaneously on the surface of coating during photo-cross- linking, which enables the photo-curing coating can decrease reflection. The resulting photo-curing coating exhibits a high transmittance over 90% and low reflection below 5% ~ 8%, with an efficiency anti- reflection of 4% ~ 7%; compared to the flat blank coating. The successful application of these AR coatings with wrinkles pattern to encapsulate the thin film solar cells results in appreciable photovoltaic performance improvement of more than 4% ~ 8%, which benefits from the decrease of the light reflection and increase of optical paths in the photoactive layer by the introduction of wrinkling pattern. Furthermore, the efficiency improvements of the solar cells are more obvious, with a remarkable increase of 8.5%, at oblique light incident angle than that with vertical light incident angle