期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A homogenous solid polymer electrolyte prepared by facile spray drying method is used for room-temperature solid lithium metal batteries
1
作者 Zehao Zhou Tong Sun +4 位作者 Jin Cui Xiu Shen Chuan Shi Shuang Cao Jinbao Zhao 《Nano Research》 SCIE EI CSCD 2023年第4期5080-5086,共7页
The aggregation of inorganic particles with high mass ratio will form a heterogeneous electric field in the solid polymer electrolytes(SPEs),which is difficult to be compatible with lithium anode,leading to inadequate... The aggregation of inorganic particles with high mass ratio will form a heterogeneous electric field in the solid polymer electrolytes(SPEs),which is difficult to be compatible with lithium anode,leading to inadequate ionic conductivity.Herein,a facile spray drying method is adopted to increase the mass ratio of inorganic particles and solve the aggregation problems of fillers simultaneously.The polyvinylidene fluoride(PVDF)with lithium bis(trifluoromethanesulfonyl)imide(LiTFSI)covers the surface of each Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO)granules during the nebulization process,then forming flat solid electrolytes via layer-by-layer deposition.Characterized by the atomic force microscope,the obtained solid electrolytes achieve a homogenous dispersion of Young’s modulus and surface electric field.As a result,the as-prepared SPEs present high tensile strength of 7.1 MPa,high ionic conductivity of 1.86×10^(−4)S·cm^(−1)at room temperature,and wide electrochemical window up to 5.0 V,demonstrating increased mechanical strength and uniform lithium-ion migration channels for SPEs.Thanks to the as-prepared SPEs,the lithiumsymmetrical cells show a highly stable Li plating/stripping cycling for over 1,000 h at 0.1 mA·cm^(−2).The corresponding Li/LCoO_(2)batteries also present good rate capability and excellent cyclic performance with capacity retention of 80%after 100 cycles at room temperature. 展开更多
关键词 solid polymer electrolytes spray drying homogenous dispersion solid lithium batteries polyvinylidene fluoride/Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(PVDF/LLZTO) surface electric field
原文传递
Insulation Design Rule for a Spacer in SF_(6)/N_(2)-filled DC Gas Insulated Apparatus
2
作者 Hongyang Zhou Guoming Ma +3 位作者 Meng Zhang Cong Wang Youping Tu Chengrong Li 《CSEE Journal of Power and Energy Systems》 SCIE EI 2024年第2期727-735,共9页
A recurring challenge of a DC SF_(6)/N_(2)-filled GIS/GIL apparatus is the charge accumulation at DC stress.The conventional design rules and knowledge of AC spacers may not be applicable for this new type of apparatu... A recurring challenge of a DC SF_(6)/N_(2)-filled GIS/GIL apparatus is the charge accumulation at DC stress.The conventional design rules and knowledge of AC spacers may not be applicable for this new type of apparatus.A novel design rule is proposed considering the effect of accumulated charge on the threshold of electric field strength being resistant to the superposed voltage.A surface charge accumulation simulation model is introduced,and the key parameters in the simulation model are measured.In addition,an experimental platform for a 100 kV spacer flashover test is established.Spacer flashover tests under superimposed voltage with opposing polarities are carried out,and the withstanding voltage of the spacer is obtained.Finally,based on the proposed model,the threshold of the surface electric field strength(tangential component)on the DC spacer in SF_(6)/N_(2) mixed gases is discussed.For a reliable insulation design of a DC GIS/GIL apparatus filled with 0.7 MPa SF_(6)/N_(2),the threshold of surface electric field strength on the DC spacer is 12 kV/mm.The insulation design rule can be referenced in the design of a high-voltage DC SF_(6)/N_(2)-filled GIS/GIL apparatus. 展开更多
关键词 Charge accumulation DC spacer flashover voltage SF_(6)/N_(2) threshold of surface electric field strength
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部