Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and ...Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and infection will occur after titanium alloy implantation due to the low biological activity of titanium alloy surface.The structures with specific functions,which can enhance osseointegration and antibacterial properties,are fabricated on the surface of titanium implants to improve the biological activity between the titanium implants and human tissues.This paper presents a comprehensive review of recent developments and applications of surface functional structure in titanium and titanium alloy implants.The applications of surface functional structure on different titanium and titanium alloy implants are introduced,and their manufacturing technologies are summarized and compared.Furthermore,the fabrication of various surface functional structures used for titanium and titanium alloy implants is reviewed and analyzed in detail.Finally,the challenges affecting the development of surface functional structures applied in titanium and titanium alloy implants are outlined,and recommendations for future research are presented.展开更多
The activated carbon with high surface area was prepared by KOH activation.It was further modified by H2SO4 and HNO3 to introduce more surface functional groups.The pore structure of the activated carbons before and a...The activated carbon with high surface area was prepared by KOH activation.It was further modified by H2SO4 and HNO3 to introduce more surface functional groups.The pore structure of the activated carbons before and after modification was analyzed based on the nitrogen adsorption isotherms.The morphology of those activated carbons was characterized using scanning electronic microscopy (SEM).The surface functional groups were determined by Fourier transform infrared spectroscopy (FTIR).The quantity of those groups was measured by the Boehm titration method.Cr(VI) removal by the activated carbons from aqueous solution was investigated at different pH values.The results show that compared with H2SO4,HNO3 destructs the original pore of the activated carbon more seriously and induces more acidic surface functional groups on the activated carbon.The pH value of the solution plays a key role in the Cr(VI) removal.The ability of reducing Cr(VI) to Cr(III) by the activated carbons is relative to the acidic surface functional groups.At higher pH values,the Cr(VI) removal ratio is improved by increasing the acidic surface functional groups of the activated carbons.At lower pH values,however,the acidic surface functional groups almost have no effect on the Cr(VI) removal by the activated carbon from aqueous solution.展开更多
Wetting condition of micro/nanostructured surface has received tremendous attention due to the potential applications in commercial,industrial,and military areas.Surfaces with extreme wetting properties,e.g.,superhydr...Wetting condition of micro/nanostructured surface has received tremendous attention due to the potential applications in commercial,industrial,and military areas.Surfaces with extreme wetting properties,e.g.,superhydrophobic or superhydrophilic,are extensively employed due to their superior anti-icing,drag reduction,enhanced boiling heat transfer,self-cleaning,and anti-bacterial properties depending on solid-liquid interfacial interactions.Laser-based techniques have gained popularity in recent years to create micro/nano-structured surface owing to their high flexibility,system precision,and ease for automation.These techniques create laser induced periodic surface structures(LIPSS)or hierarchical structures on substrate material.However,micro/nanostructures alone cannot attain the desired wettability.Subsequent modification of surface chemistry is essentially needed to achieve target extreme wettability.This review paper aims to provide a comprehensive review for both laser texturing techniques and the following chemistry modification methods.Recent research progress and fundamental mechanisms of surface structure generation via different types of lasers and various chemistry modification methods are discussed.The complex combination between the laser texturing and surface chemistry modification methods to decide the final wetting condition is presented.More importantly,surface functionalities of these surfaces with extreme wetting properties are discussed.Lastly,prospects for future research are proposed and discussed.展开更多
The industrial silica fume pretreated by nitric acid at 80 °C was re-used in this work. Then, the obtained silica nanoparticles were surface functionalized by silane coupling agents, such as(3-Mercaptopropyl) tri...The industrial silica fume pretreated by nitric acid at 80 °C was re-used in this work. Then, the obtained silica nanoparticles were surface functionalized by silane coupling agents, such as(3-Mercaptopropyl) triethoxysilane(MPTES) and(3-Amincpropyl) trithoxysilane(APTES). Some further modifications were studied by chloroaceetyl choride and 1,8-Diaminoaphalene for amino modified silica. The surface functionalized silica nanoparticles were characterized by Fourier transform infrared(FI-IR) and X-ray photoelectron spectroscopy(XPS). The prepared adsorbent of surface functionalized silica nanoparticles with differential function groups were investigated in the selective adsorption about Pb2+, Cu2+, Hg2+, Cd2+ and Zn2+ions in aqueous solutions. The results show that the(3-Mercaptopropyl) triethoxysilane functionalized silica nanoparticles(SiO2-MPTES) play an important role in the selective adsorption of Cu2+ and Hg2+, the(3-Amincpropyl) trithoxysilane(APTES) functionalized silica nanoparticles(SiO2-APTES) exhibited maximum removal efficiency towards Pb2+ and Hg2+, the 1,8-Diaminoaphalene functionalized silica nanoparticles was excellent for removal of Hg2+ at room temperature, respectively.展开更多
FeO;supported on activated carbon(AC) has been shown to be an ideal catalyst for catalytic wet peroxide oxidation(CWPO) due to its high CWPO reaction activity and stability. Although there have been some studies on th...FeO;supported on activated carbon(AC) has been shown to be an ideal catalyst for catalytic wet peroxide oxidation(CWPO) due to its high CWPO reaction activity and stability. Although there have been some studies on the mechanism of Fe/AC catalysis in CWPO, the specific contribution of each component(surface oxygen groups and FeOxon AC) inside an Fe/AC catalyst and their corresponding reaction mechanism remain unclear, and the reaction stability of CWPO catalysts has rarely been discussed. Then the optimal CWPO catalyst in our laboratory, 3%Fe/AC, was selected.(1) By removing certain components on the AC through heat treatment, its contribution to the reaction and the corresponding reaction mechanism were investigated. With the aid of temperature-programmed desorption–mass spectrometry(TPD–MS) and the CWPO reaction, the normalized catalytic contributions of components were shown to be: 37.3%(carboxylic groups), 5.3%(anhydride), 19.3%(ether/hydroxyl),-71.4%(carbonyl groups) and 100%(FeOx),respectively. DFT calculation and EPR analysis confirmed that carboxylic groups and Fe_(2)O_(3) are able to activate the H_(2)O_(2) to generate·OH.(2) The catalysts at were characterized at different reaction times(0 h, 450 h, 900 h, 1350 h, and 1800 h) by TPD–MS and M?ssbauer spectroscopy. Results suggested that the number of carboxylic goups gradually increased and the size of paramagnetic Fe_(2)O_(3) particle crystallites gradually increased as the reactions progressed. The occurrence of strong interactions between metal oxides and AC was also confirmed. Due to these effects, the strong stability of 3%Fe/AC was further improved. Therefore, the reasons for the high activity and strong stability of 3%Fe/AC in CWPO were clearly shown. We believe that this work provides an idea of the removal of cresols from wastewater into the introduction to show the potential applications of CWPO.展开更多
A series of activated carbons(ACs) were prepared using HNO_3,H_2O_2 and steam as activation agents with the aim to introduce functional groups to carbon surface in the ACs preparation process.The effects of concentr...A series of activated carbons(ACs) were prepared using HNO_3,H_2O_2 and steam as activation agents with the aim to introduce functional groups to carbon surface in the ACs preparation process.The effects of concentration of activation agent,activation time on the surface functional groups and redox property of ACs were characterized by Temperature Program Desorption(TPD) and Cyclic Voltammetry(CV).Results showed that lactone groups of ACs activated by HNO_3 increase with activation time,and the carboxyl groups increase with the concentration of HNO_3.Carbonyl/quinine groups of ACs activated by H_2O_2 increase with the activation time and the concentration of H_2O_2,although the acidic groups decrease with the concentration of H_2O_2.The redox property reflected by CV at 0 and 0.5 V is different with any kinds of oxygen functional groups characterized by TPD,but it is consistent with the SO_2 catalytic oxidization /oxidation properties indicated by TPR.展开更多
Water pollution regarding dyes and heavy metal ions is crucial facing the world.How to effectively separate these contaminants from water has been a key issue.Graphene oxide(GO)promises the greenwater world as a long-...Water pollution regarding dyes and heavy metal ions is crucial facing the world.How to effectively separate these contaminants from water has been a key issue.Graphene oxide(GO)promises the greenwater world as a long-lasting spotlight adsorbent material and therefore,harnessing GO has been the research hotspot for over a decade.The state of GO as well as its surface functional groups plays an important role in adsorption.And the way of preparation and structural modification matters to the performance of GO.In this review,the significance of the state of existence of stock GO and surface functional groups is explored in terms of preparation,structural modification,and adsorption.Besides,various adsorbates for GO adsorption are also involved,the discussion of which is rarely established elsewhere.展开更多
Affinity membranes are fabricated for boric acid removal by the surface functionalization of microporous polypropylene membrane(MPPM)with lactose-based polyols.The affinity is based on specific complexation between bo...Affinity membranes are fabricated for boric acid removal by the surface functionalization of microporous polypropylene membrane(MPPM)with lactose-based polyols.The affinity is based on specific complexation between boric acid and saccharide polyols.A photoinduced grafting-chemical reaction sequence was used to prepare these affinity membranes.Poly(2-aminoethyl methacrylate hydrochloride)[poly(AEMA)]was grafted on the surfaces of MPPM by UV-induced graft polymerization.Grafting in the membrane pores was visualized by dying the cross-section of poly(AEMA)-grafted MPPM with fluorescein disodium and imaging with confocal laser scanning microscopy.It is concluded that lactose ligands can be covalently immobilized on the external surface and in the pores by the subsequent coupling of poly(AEMA)with lactobionic acid(LA).Physical and chemical properties of the affinity membranes were characterized by field emission scanning electron microscopy and Fourier Transform Infrared/Attenuated Total Refraction spectroscopy(FT-IR/ATR).3-Aminophenyl boric acid(3-APBA)was removed from aqueous solution by a single piece of lactose-functionalized MPPM in a dynamic filtration system.The results show that the 3-APBA removal reaches an optimal efficiency(39.5%)under the alkaline condition(pH9.1),which can be improved by increasing the immobilization density of LA.Regeneration of these affinity membranes can be easily realized through acid-base washing because the complexation of boric acid and saccharide polyol is reversible.展开更多
Among the several types of inorganic nanoparticles available,silica nanoparticles(SNP)have earned their relevance in biological applications namely,as bioimaging agents.In fact,uorescent SNP(FSNP)have been explored in...Among the several types of inorganic nanoparticles available,silica nanoparticles(SNP)have earned their relevance in biological applications namely,as bioimaging agents.In fact,uorescent SNP(FSNP)have been explored in this-eld as protective nanocarriers,overcoming some limitations presented by conventional organic dyes such as high photobleaching rates.A crucial aspect on the use of uorescent SNP relates to their surface properties,since it determines the extent of interaction between nanoparticles and biological systems,namely in terms of colloidal stability in water,cellular recognition and internalization,tracking,biodistribution and speci-city,among others.Therefore,it is imperative to understand the mechanisms underlying the interaction between biosystems and the SNP surfaces,making surface functionalization a relevant step in order to take full advantage of particle properties.The versatility of the surface chemistry on silica platforms,together with the intrinsic hydrophilicity and biocompatibility,make these systems suitable for bioimaging applications,such as those mentioned in this review.展开更多
Surface functionalization of sensor chip for probe immobilization is crucial for the biosensing applications of surface plasmon resonance(SPR)sensors.In this paper,we report a method circulating the dopamine aqueous s...Surface functionalization of sensor chip for probe immobilization is crucial for the biosensing applications of surface plasmon resonance(SPR)sensors.In this paper,we report a method circulating the dopamine aqueous solution to coat polydopamine film on sensing surface for surface functionalization of SPR chip.The polydopamine film with available thickness can be easily prepared by controlling the circulation time and the biorecognition elements can be immobilized on the polydopamine film for specific molecular interaction analysis.These opera-tions are all performed under flow condition in the fuidic system,and have the advantages of easy implementation,less time consuming,and low cost,because the reagents and devices used in the operations are routinely applied in most laboratories.In this study,the specific absorption between the protein A probe immobilized on the sensing surface and human immunoglobulin G in the buffer is monitored based on this surface functionalization strategy to demonstrated its feasibility for SPR biosensing applications.展开更多
Surface functionalization of carbon nanofibers(CNFs) was carried out, i e, CNFs were firstly oxidized and then the surface was silanized by 3-Aminopropyltriethoxysilane(APTES) via an assembly method. A new kind of...Surface functionalization of carbon nanofibers(CNFs) was carried out, i e, CNFs were firstly oxidized and then the surface was silanized by 3-Aminopropyltriethoxysilane(APTES) via an assembly method. A new kind of high wear resistance s-CNFs/epoxy composite was fabricated by in-situ reaction. FTIR spectroscopy was used to detect the changes of the functional groups produced by silane on the surface of CNFs. The tribological properties and microstructures of modified and unmodified CNFs/epoxy composites were studied, respectively. The expremental results indicate that APTES is covalently linked to the surface of CNFs successfully and improves the dispersion of CNF in epoxy matrix. The friction coefficients and the wear rates of s-CNFs/epoxy composites are evidently lower than those of u-CNFs/epoxy composites under the same loads. Investigations also indicate that abrasive wear is the main wear mechanism for u-CNFs/epoxy composite, with slight adhesive wear for s-CNFs/epoxy composite under the same sliding wear condition.展开更多
Indium-based materials(e.g.,In_(2)O_(3))are a class of promising non-noble metal-based catalysts for electroreduction of carbon dioxide(CO_(2)).However,competitive hydrogen reduction reaction(HER)on indium-based catal...Indium-based materials(e.g.,In_(2)O_(3))are a class of promising non-noble metal-based catalysts for electroreduction of carbon dioxide(CO_(2)).However,competitive hydrogen reduction reaction(HER)on indium-based catalysts hampers CO_(2) reduction reaction(CO_(2)RR)process.We herein tune the interfacial microenvironment of In_(2)O_(3) through chemical graft of alkyl phosphoric acid molecules using a facile solution-processed strategy for the first time,which is distinguished from other researches that tailor intrinsic activity of In_(2)O_(3) themselves.The surface functionalization of alkyl phosphoric acids over In_(2)O_(3) is demonstrated to remarkably boost CO_(2) conversion.For example,octadecylphosphonic acid modified In_(2)O_(3) exhibits Faraday efficiency for H_(2) H_(2) H_(2)(FE)of as low as 6.6%and FEHCOOH of 86.5%at-0.67 V vs.RHE,which are far superior to parent In_(2)O_(3) counterparts(FE of 24.0%and FEHCOOH of 63.1%).Moreover,the enhancing effect of alkyl phosphoric acid functionalization is found to be closely related to the length of alkyl chains.By virtue of comprehensive experimental characterizations and molecular dynamics simulations,it is revealed that the modification of alkyl phosphoric acids significantly alters the interface microenvironment of the electrocatalyst,which changes the electrocatalyst surface from hydrophilic and aerophobic to hydrophobic and aerophilic.In this case,the water molecules are pushed away and more CO_(2) molecules are trapped,increasing local CO_(2) concentration at In_(2)O_(3) active sites,thus leading to the significantly enhanced CO_(2)RR and suppressed HER.This work highlights the importance of regulating the interfacial microenvironment of inorganic catalysts by molecular surface functionalization as a means for promoting the electrochemical performance in electrosynthesis and beyond.展开更多
The study provides insight into the combined effect of sorbent surface functionalities and microporosity on2,2 ′,4,4 ′-tetrabromodiphenyl ether (BDE-47) sorption onto biochars. A series of biochars prepared underd...The study provides insight into the combined effect of sorbent surface functionalities and microporosity on2,2 ′,4,4 ′-tetrabromodiphenyl ether (BDE-47) sorption onto biochars. A series of biochars prepared underdifferent conditionswere used to test their sorption behaviorswith BDE-47. The extents of sorption behaviorswere parameterized in terms of the single-point adsorption equilibrium constant (Koc ) at three equilibrium concentration (C e ) levels (0.001Sw (solubility), 0.005Sw , and 0.05Sw )whichwasdetermined using the Freundlich model. To elucidate the concentration-dependentdominant mechanisms for BDE-47 sorption onto biochars, K ocwas correlatedwith four major parameters using multiple parameter linear analysis accompaniedwith significance testing. The results indicated that at low concentration (Ce = 0.001Sw ), the surface microporosity term,which represented a pore-filling mechanism, contributed significantly to this relationship,while as concentrationwas increased to higher levels, surface functionality related to surface adsorption began to take thedominant role,whichwas further confirmed by the results of Polanyi-based modeling. Given the above results, adual mode model based on Dubinin-Radushkevich andde Boer-Zwikker equationswas adopted to quantitatively assess the changes of significance of surface adsorption aswell as that of pore fillingwith sorption processdevelopment. In addition, UV spectra of four typical aromatic compoundswhich represented the key structural fragments of biochars before and after interactionswith BDE-47were analyzed todetermine the active functional groups and supply complementary evidence for thedominant interaction force for surface adsorption, based onwhich π-π electron-donor-acceptor interactionwas proposed to contribute greatly to surface adsorption.展开更多
Surface functionalization is a widely adopted technique for surface modification which allows researchers to customize surfaces to integrate with their research. Surface functionalization has been used recently to ada...Surface functionalization is a widely adopted technique for surface modification which allows researchers to customize surfaces to integrate with their research. Surface functionalization has been used recently to adapt surfaces to integrate with biological materials specifically to isolate cells or mimic biological tissues through cell patterning. Cell isolation and cell patterning both can be integrated with extant techniques or surfaces to customize the research to whatever needs to be tested. Substrates such as metals, biologically mimicking surfaces, environmental responsive surfaces, and even three-dimensional surfaces such as hydrogels have all been adapted to allow for functionalization for both patterning and isolation. In this review we have described both the advantages and disadvantages of these techniques and the related chemistries to better understand these tools and how best to apply them in the hope that we can further expand upon the research in the field.展开更多
Osteoarthritis is associated with the significantly increased friction of the joint,which results in progressive and irreversible damage to the articular cartilage.A synergistic therapy integrating lubrication enhance...Osteoarthritis is associated with the significantly increased friction of the joint,which results in progressive and irreversible damage to the articular cartilage.A synergistic therapy integrating lubrication enhancement and drug delivery is recently proposed for the treatment of early-stage osteoarthritis.In the present study,bioinspired by the self-adhesion performance of mussels and super-lubrication property of articular cartilages,a biomimetic self-adhesive dopamine methacrylamide-poly(2-methacryloyloxyethyl phosphorylcholine)(DMA-MPC)copolymer was designed and synthesized via free radical polymerization.The copolymer was successfully modified onto the surface of biodegradable mesoporous silica nanoparticles(bMSNs)by the dip-coating method to prepare the dual-functional nanoparticles(bMSNs@DMA-MPC),which were evaluated using a series of surface characterizations including the transmission electron microscope(TEM),Fourier transform infrared(FTIR)spectrum,thermogravimetric analysis(TGA),X-ray photoelectron spectroscopy(XPS),etc.The tribological test and in vitro drug release test demonstrated that the developed nanoparticles were endowed with improved lubrication performance and achieved the sustained release of an anti-inflammatory drug,i.e.,diclofenac sodium(DS).In addition,the in vitro biodegradation test showed that the nanoparticles were almost completely biodegraded within 10 d.Furthermore,the dual-functional nanoparticles were biocompatible and effectively reduced the expression levels of two inflammation factors such as interleukin-1β(IL-1β)and interleukin-6(IL-6).In summary,the surface functionalized nanoparticles with improved lubrication and local drug release can be applied as a potential intra-articularly injected biolubricant for synergistic treatment of early-stage osteoarthritis.展开更多
The thermal deactivation of diesel soot particles exerts a significant influence on the control strategy for the regeneration of diesel particulate filters(DPFs).This work focused on the changes in the surface functio...The thermal deactivation of diesel soot particles exerts a significant influence on the control strategy for the regeneration of diesel particulate filters(DPFs).This work focused on the changes in the surface functional groups,carbon chemical state,and graphitization degree during thermal treatment in an inert gas environment at intermediate temperatures of 600℃,800℃,and 1000℃ and explore the chemical species that were desorbed from the diesel soot surface during thermal treatment using a thermogravimetric analyser coupled with a gas-chromatograph mass spectrometer(TGA-GC/MS).The surface functional groups and carbon chemical statewere characterized using Fourier transform infrared spectroscopy(FT-IR)and X-ray photoelectron spectroscopy(XPS).The graphitization degree was evaluated by means of Raman spectroscopy(RS).The concentrations of aliphatic C–H,C–OH,C=O,and O–C=O groups are reduced for diesel soot and carbon black when increasing the thermal treatment temperature,while the sp^(2)/sp^(3) hybridized ratio and graphitization degree enhance.These results provide comprehensive evidence of the decreased reactivity of soot samples.Among oxygenated functional groups,the percentage reduction during thermal treatment is the largest for the O–C=O groups owing to its worst thermodynamic stability.TGA-GC/MS results show that the aliphatic and aromatic chains and oxygenated species would be desorbed from the soot surface during 1000℃ thermal treatment of diesel soot.展开更多
Convenient and integration fabrication process is a key issue for the application of functional nanofibers.A surface functionalization method was developed based on coaxial electrospinning to produce ultraviolet(UV)pr...Convenient and integration fabrication process is a key issue for the application of functional nanofibers.A surface functionalization method was developed based on coaxial electrospinning to produce ultraviolet(UV)protection nanofibers.The titanium dioxide(TiO_(2))nanoparticles suspension was delivered through the shell channel of the coaxial spinneret,by which the aggregation of TiO_(2) nanoparticles was overcome and the distribution uniformity on the surface of polyethylene oxide(PEO)nanofiber was obtained.With the content of TiO_(2) increasing from 0 to 3%(mass fraction),the average diameter of nanofibers increased from(380±30)nm to(480±100)nm.The surface functionalization can be realized during the electrospinning process to gain PEO/TiO_(2) composite nanofibers directly.The uniform distribution of TiO_(2) nanoparticles on the surface of nanofibers enhanced the UV absorption and resistance performance.The maximum UV protection factor(UPF)value of composite nanofibers reaches 2751.This work presented a novel surface-functionalized way for the preparation of composite nanofiber,which has great application potential in the field of micro/nano system integration fabrication.展开更多
A generic method was described to change surface biocompatibihty by introducing reactive functional groups onto surfaces of polymeric substrates and covalently binding them with biomolecules.A block copolymer with pro...A generic method was described to change surface biocompatibihty by introducing reactive functional groups onto surfaces of polymeric substrates and covalently binding them with biomolecules.A block copolymer with protected carboxylic acid functionality,poly(styrene-b-tert-butyl acrylate)(PS-PtBA),was spin coated from solutions in toluene on a bioinert polystyrene(PS) substrate to form a bilayer structure:a surface layer of the poly(tert-butyl acrylate)(PtBA) blocks that order at the air-polymer interface and a bottom layer of the PS blocks that entangle with the PS substrate.The thickness of the PtBA layer and the area density of tert-butyl ester groups of PtBA increased linearly with the concentration of the spin coating solution until a 2 nm saturated monolayer coverage of PtBA was achieved at the concentration of 0.4%W/W.The protected carboxylic acid groups were generated by exposing the tert-butyl ester groups of PtBA to trifluoroacetic acid (TFA) for bioconjugation with FMRF peptides via amide bonds.The yield of the bioconjugation reaction for the saturated surface was calculated to be 37.1%based on X-ray photoelectron spectroscopy(XPS) measurements.The success of each functionalization step was demonstrated and characterized by XPS and contact angle measurements.This polymer functionalization/modification concept can be virtually applied to any polymeric substrate by choosing appropriate functional block copolymers and biomolecules to attain novel biocompatibility.展开更多
Melt extrusion-based additive manufacturing(ME-AM)is a promising technique to fabricate porous scaffolds for tissue engi-neering applications.However,most synthetic semicrystalline polymers do not possess the intrinsi...Melt extrusion-based additive manufacturing(ME-AM)is a promising technique to fabricate porous scaffolds for tissue engi-neering applications.However,most synthetic semicrystalline polymers do not possess the intrinsic biological activity required to control cell fate.Grafting of biomolecules on polymeric surfaces of AM scaffolds enhances the bioactivity of a construct;however,there are limited strategies available to control the surface density.Here,we report a strategy to tune the surface density of bioactive groups by blending a low molecular weight poly(ε-caprolactone)5k(PCL5k)containing orthogonally reactive azide groups with an unfunctionalized high molecular weight PCL75k at different ratios.Stable porous three-dimensional(3D)scaf-folds were then fabricated using a high weight percentage(75 wt.%)of the low molecular weight PCL 5k.As a proof-of-concept test,we prepared films of three different mass ratios of low and high molecular weight polymers with a thermopress and reacted with an alkynated fluorescent model compound on the surface,yielding a density of 201-561 pmol/cm^(2).Subsequently,a bone morphogenetic protein 2(BMP-2)-derived peptide was grafted onto the films comprising different blend compositions,and the effect of peptide surface density on the osteogenic differentiation of human mesenchymal stromal cells(hMSCs)was assessed.After two weeks of culturing in a basic medium,cells expressed higher levels of BMP receptor II(BMPRII)on films with the conjugated peptide.In addition,we found that alkaline phosphatase activity was only significantly enhanced on films contain-ing the highest peptide density(i.e.,561 pmol/cm^(2)),indicating the importance of the surface density.Taken together,these results emphasize that the density of surface peptides on cell differentiation must be considered at the cell-material interface.Moreover,we have presented a viable strategy for ME-AM community that desires to tune the bulk and surface functionality via blending of(modified)polymers.Furthermore,the use of alkyne-azide“click”chemistry enables spatial control over bioconjugation of many tissue-specific moieties,making this approach a versatile strategy for tissue engineering applications.展开更多
Nitrogen-doped diamond-like carbon (DLC:N) films prepared by the filtered cathodic vacuum arc technology are functionalized with various chemical molecules including dopamine (DA), 3-Aminobenzeneboronic acid (A...Nitrogen-doped diamond-like carbon (DLC:N) films prepared by the filtered cathodic vacuum arc technology are functionalized with various chemical molecules including dopamine (DA), 3-Aminobenzeneboronic acid (APBA), and adenosine triphosphate (ATP), and the impacts of surface functionalities on the surface morphologies, compositions, microstructures, and cell compatibility of the DLC:N films are systematically investigated. We demonstrate that the surface groups of DLC:N have a significant effect on the surface and structural properties of the film. The activity of PC12 cells depends on the particular type of surface functional groups of DLC:N films regardless of surface roughness and wettability. Our research offers a novel way for designing functionalized carbon films as tailorable substrates for biosensors and biomedical engineering applications.展开更多
基金Supported by National Natural Science Foundation of China (Grant Nos.52235011,51905352)Shenzhen Municipal Excellent Science and Technology Creative Talent Training Program (Grant No.RCBS20210609103819021)+1 种基金Guangdong Provincial Basic and Applied Basic Research Foundation (Grant No.2023B1515120086)Shenzhen Municipal Science and Technology Planning Project (Grant No.CJGJZD20230724093600001)。
文摘Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and infection will occur after titanium alloy implantation due to the low biological activity of titanium alloy surface.The structures with specific functions,which can enhance osseointegration and antibacterial properties,are fabricated on the surface of titanium implants to improve the biological activity between the titanium implants and human tissues.This paper presents a comprehensive review of recent developments and applications of surface functional structure in titanium and titanium alloy implants.The applications of surface functional structure on different titanium and titanium alloy implants are introduced,and their manufacturing technologies are summarized and compared.Furthermore,the fabrication of various surface functional structures used for titanium and titanium alloy implants is reviewed and analyzed in detail.Finally,the challenges affecting the development of surface functional structures applied in titanium and titanium alloy implants are outlined,and recommendations for future research are presented.
文摘The activated carbon with high surface area was prepared by KOH activation.It was further modified by H2SO4 and HNO3 to introduce more surface functional groups.The pore structure of the activated carbons before and after modification was analyzed based on the nitrogen adsorption isotherms.The morphology of those activated carbons was characterized using scanning electronic microscopy (SEM).The surface functional groups were determined by Fourier transform infrared spectroscopy (FTIR).The quantity of those groups was measured by the Boehm titration method.Cr(VI) removal by the activated carbons from aqueous solution was investigated at different pH values.The results show that compared with H2SO4,HNO3 destructs the original pore of the activated carbon more seriously and induces more acidic surface functional groups on the activated carbon.The pH value of the solution plays a key role in the Cr(VI) removal.The ability of reducing Cr(VI) to Cr(III) by the activated carbons is relative to the acidic surface functional groups.At higher pH values,the Cr(VI) removal ratio is improved by increasing the acidic surface functional groups of the activated carbons.At lower pH values,however,the acidic surface functional groups almost have no effect on the Cr(VI) removal by the activated carbon from aqueous solution.
基金Project(52105175)supported by the National Natural Science Foundation of ChinaProject(BK20210235)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(JSSCBS20210121)supported by the Jiangsu Provincial Innovative and Entrepreneurial Doctor Program,China。
文摘Wetting condition of micro/nanostructured surface has received tremendous attention due to the potential applications in commercial,industrial,and military areas.Surfaces with extreme wetting properties,e.g.,superhydrophobic or superhydrophilic,are extensively employed due to their superior anti-icing,drag reduction,enhanced boiling heat transfer,self-cleaning,and anti-bacterial properties depending on solid-liquid interfacial interactions.Laser-based techniques have gained popularity in recent years to create micro/nano-structured surface owing to their high flexibility,system precision,and ease for automation.These techniques create laser induced periodic surface structures(LIPSS)or hierarchical structures on substrate material.However,micro/nanostructures alone cannot attain the desired wettability.Subsequent modification of surface chemistry is essentially needed to achieve target extreme wettability.This review paper aims to provide a comprehensive review for both laser texturing techniques and the following chemistry modification methods.Recent research progress and fundamental mechanisms of surface structure generation via different types of lasers and various chemistry modification methods are discussed.The complex combination between the laser texturing and surface chemistry modification methods to decide the final wetting condition is presented.More importantly,surface functionalities of these surfaces with extreme wetting properties are discussed.Lastly,prospects for future research are proposed and discussed.
基金Project(2012CB722803)supported by the Key Project of National Basic Research and Development Program of ChinaProject(U1202271)supported by the National Natural Science Foundation of ChinaProject(IRT1250)supported by the Program for Innovative Research Team in University of Ministry of Education of China
文摘The industrial silica fume pretreated by nitric acid at 80 °C was re-used in this work. Then, the obtained silica nanoparticles were surface functionalized by silane coupling agents, such as(3-Mercaptopropyl) triethoxysilane(MPTES) and(3-Amincpropyl) trithoxysilane(APTES). Some further modifications were studied by chloroaceetyl choride and 1,8-Diaminoaphalene for amino modified silica. The surface functionalized silica nanoparticles were characterized by Fourier transform infrared(FI-IR) and X-ray photoelectron spectroscopy(XPS). The prepared adsorbent of surface functionalized silica nanoparticles with differential function groups were investigated in the selective adsorption about Pb2+, Cu2+, Hg2+, Cd2+ and Zn2+ions in aqueous solutions. The results show that the(3-Mercaptopropyl) triethoxysilane functionalized silica nanoparticles(SiO2-MPTES) play an important role in the selective adsorption of Cu2+ and Hg2+, the(3-Amincpropyl) trithoxysilane(APTES) functionalized silica nanoparticles(SiO2-APTES) exhibited maximum removal efficiency towards Pb2+ and Hg2+, the 1,8-Diaminoaphalene functionalized silica nanoparticles was excellent for removal of Hg2+ at room temperature, respectively.
基金funded by the National Natural Science Foundation of China (52100072)the Beijing Natural Science Foundation(8214056)+2 种基金the special fund of Beijing Key Laboratory of Clean Fuels and Efficient Catalytic Emission Reduction Technology,the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA21021101)the National Key Research and Development Program of China (2019YFA0705803)Scientific Research Common Program of Beijing Municipal Commission of Education(KM202010017006)。
文摘FeO;supported on activated carbon(AC) has been shown to be an ideal catalyst for catalytic wet peroxide oxidation(CWPO) due to its high CWPO reaction activity and stability. Although there have been some studies on the mechanism of Fe/AC catalysis in CWPO, the specific contribution of each component(surface oxygen groups and FeOxon AC) inside an Fe/AC catalyst and their corresponding reaction mechanism remain unclear, and the reaction stability of CWPO catalysts has rarely been discussed. Then the optimal CWPO catalyst in our laboratory, 3%Fe/AC, was selected.(1) By removing certain components on the AC through heat treatment, its contribution to the reaction and the corresponding reaction mechanism were investigated. With the aid of temperature-programmed desorption–mass spectrometry(TPD–MS) and the CWPO reaction, the normalized catalytic contributions of components were shown to be: 37.3%(carboxylic groups), 5.3%(anhydride), 19.3%(ether/hydroxyl),-71.4%(carbonyl groups) and 100%(FeOx),respectively. DFT calculation and EPR analysis confirmed that carboxylic groups and Fe_(2)O_(3) are able to activate the H_(2)O_(2) to generate·OH.(2) The catalysts at were characterized at different reaction times(0 h, 450 h, 900 h, 1350 h, and 1800 h) by TPD–MS and M?ssbauer spectroscopy. Results suggested that the number of carboxylic goups gradually increased and the size of paramagnetic Fe_(2)O_(3) particle crystallites gradually increased as the reactions progressed. The occurrence of strong interactions between metal oxides and AC was also confirmed. Due to these effects, the strong stability of 3%Fe/AC was further improved. Therefore, the reasons for the high activity and strong stability of 3%Fe/AC in CWPO were clearly shown. We believe that this work provides an idea of the removal of cresols from wastewater into the introduction to show the potential applications of CWPO.
基金part of the Innovation Program for Undergraduate supported by China University of Mining & Technology,Beijing.
文摘A series of activated carbons(ACs) were prepared using HNO_3,H_2O_2 and steam as activation agents with the aim to introduce functional groups to carbon surface in the ACs preparation process.The effects of concentration of activation agent,activation time on the surface functional groups and redox property of ACs were characterized by Temperature Program Desorption(TPD) and Cyclic Voltammetry(CV).Results showed that lactone groups of ACs activated by HNO_3 increase with activation time,and the carboxyl groups increase with the concentration of HNO_3.Carbonyl/quinine groups of ACs activated by H_2O_2 increase with the activation time and the concentration of H_2O_2,although the acidic groups decrease with the concentration of H_2O_2.The redox property reflected by CV at 0 and 0.5 V is different with any kinds of oxygen functional groups characterized by TPD,but it is consistent with the SO_2 catalytic oxidization /oxidation properties indicated by TPR.
基金supported by the National Natural Science Foundation of China(51902007)。
文摘Water pollution regarding dyes and heavy metal ions is crucial facing the world.How to effectively separate these contaminants from water has been a key issue.Graphene oxide(GO)promises the greenwater world as a long-lasting spotlight adsorbent material and therefore,harnessing GO has been the research hotspot for over a decade.The state of GO as well as its surface functional groups plays an important role in adsorption.And the way of preparation and structural modification matters to the performance of GO.In this review,the significance of the state of existence of stock GO and surface functional groups is explored in terms of preparation,structural modification,and adsorption.Besides,various adsorbates for GO adsorption are also involved,the discussion of which is rarely established elsewhere.
基金Supported by the National Natural Science Foundation of China(50933006)the National Basic Research Program of China(2009CB623401)
文摘Affinity membranes are fabricated for boric acid removal by the surface functionalization of microporous polypropylene membrane(MPPM)with lactose-based polyols.The affinity is based on specific complexation between boric acid and saccharide polyols.A photoinduced grafting-chemical reaction sequence was used to prepare these affinity membranes.Poly(2-aminoethyl methacrylate hydrochloride)[poly(AEMA)]was grafted on the surfaces of MPPM by UV-induced graft polymerization.Grafting in the membrane pores was visualized by dying the cross-section of poly(AEMA)-grafted MPPM with fluorescein disodium and imaging with confocal laser scanning microscopy.It is concluded that lactose ligands can be covalently immobilized on the external surface and in the pores by the subsequent coupling of poly(AEMA)with lactobionic acid(LA).Physical and chemical properties of the affinity membranes were characterized by field emission scanning electron microscopy and Fourier Transform Infrared/Attenuated Total Refraction spectroscopy(FT-IR/ATR).3-Aminophenyl boric acid(3-APBA)was removed from aqueous solution by a single piece of lactose-functionalized MPPM in a dynamic filtration system.The results show that the 3-APBA removal reaches an optimal efficiency(39.5%)under the alkaline condition(pH9.1),which can be improved by increasing the immobilization density of LA.Regeneration of these affinity membranes can be easily realized through acid-base washing because the complexation of boric acid and saccharide polyol is reversible.
基金FCT for her Ph.D grant(SFRH/BD/88334/2012).Thanks are due to Aveiro University and to FCT/MEC for the-nancial support to QOPNA(FCT UID/QUI/00062/2013),CICECO-Aveiro Institute of Materials(FCT UID/CTM/50011/2013),CESAM(FCT UID/MAR/LA0017/2013)and CQE(FCT UID/QUI/0100/2013)research units,through national funds and where applicable co-nanced by the FEDER,within the PT2020 Partnership Agreement.
文摘Among the several types of inorganic nanoparticles available,silica nanoparticles(SNP)have earned their relevance in biological applications namely,as bioimaging agents.In fact,uorescent SNP(FSNP)have been explored in this-eld as protective nanocarriers,overcoming some limitations presented by conventional organic dyes such as high photobleaching rates.A crucial aspect on the use of uorescent SNP relates to their surface properties,since it determines the extent of interaction between nanoparticles and biological systems,namely in terms of colloidal stability in water,cellular recognition and internalization,tracking,biodistribution and speci-city,among others.Therefore,it is imperative to understand the mechanisms underlying the interaction between biosystems and the SNP surfaces,making surface functionalization a relevant step in order to take full advantage of particle properties.The versatility of the surface chemistry on silica platforms,together with the intrinsic hydrophilicity and biocompatibility,make these systems suitable for bioimaging applications,such as those mentioned in this review.
基金This research was made possible with the financial support from NSFC China(61275188,61378089,81470029,61361160416)the 863 project,China,the Technology Development Program of Shenzhen City,the Committee of Science and Technology Innovation of Shenzhen(JCYJ20140902110354241)Science and Technology Project of Guangdong Province(2015A010106002).
文摘Surface functionalization of sensor chip for probe immobilization is crucial for the biosensing applications of surface plasmon resonance(SPR)sensors.In this paper,we report a method circulating the dopamine aqueous solution to coat polydopamine film on sensing surface for surface functionalization of SPR chip.The polydopamine film with available thickness can be easily prepared by controlling the circulation time and the biorecognition elements can be immobilized on the polydopamine film for specific molecular interaction analysis.These opera-tions are all performed under flow condition in the fuidic system,and have the advantages of easy implementation,less time consuming,and low cost,because the reagents and devices used in the operations are routinely applied in most laboratories.In this study,the specific absorption between the protein A probe immobilized on the sensing surface and human immunoglobulin G in the buffer is monitored based on this surface functionalization strategy to demonstrated its feasibility for SPR biosensing applications.
基金Funded by the National Young Top Talents Plan of China(2013042)the National Science Foundation of China(21676052,21606042)+1 种基金the Science Foundation for Distinguished Young Scholars of Heilongjiang Province(JC201403)the Natural Science Foundation of Heilongjiang Province(E2015034)
文摘Surface functionalization of carbon nanofibers(CNFs) was carried out, i e, CNFs were firstly oxidized and then the surface was silanized by 3-Aminopropyltriethoxysilane(APTES) via an assembly method. A new kind of high wear resistance s-CNFs/epoxy composite was fabricated by in-situ reaction. FTIR spectroscopy was used to detect the changes of the functional groups produced by silane on the surface of CNFs. The tribological properties and microstructures of modified and unmodified CNFs/epoxy composites were studied, respectively. The expremental results indicate that APTES is covalently linked to the surface of CNFs successfully and improves the dispersion of CNF in epoxy matrix. The friction coefficients and the wear rates of s-CNFs/epoxy composites are evidently lower than those of u-CNFs/epoxy composites under the same loads. Investigations also indicate that abrasive wear is the main wear mechanism for u-CNFs/epoxy composite, with slight adhesive wear for s-CNFs/epoxy composite under the same sliding wear condition.
基金support from the National Natural Science Foundation of China(Nos.52002015,22275010,22105016,U1707603,21625101 and 21521005)the Fundamental Research Funds for the Central Universities(No.buctrc202006)the Research Fund Program of Guangdong Provincial Key Laboratory of Fuel Cell Technology(No.FC202203).
文摘Indium-based materials(e.g.,In_(2)O_(3))are a class of promising non-noble metal-based catalysts for electroreduction of carbon dioxide(CO_(2)).However,competitive hydrogen reduction reaction(HER)on indium-based catalysts hampers CO_(2) reduction reaction(CO_(2)RR)process.We herein tune the interfacial microenvironment of In_(2)O_(3) through chemical graft of alkyl phosphoric acid molecules using a facile solution-processed strategy for the first time,which is distinguished from other researches that tailor intrinsic activity of In_(2)O_(3) themselves.The surface functionalization of alkyl phosphoric acids over In_(2)O_(3) is demonstrated to remarkably boost CO_(2) conversion.For example,octadecylphosphonic acid modified In_(2)O_(3) exhibits Faraday efficiency for H_(2) H_(2) H_(2)(FE)of as low as 6.6%and FEHCOOH of 86.5%at-0.67 V vs.RHE,which are far superior to parent In_(2)O_(3) counterparts(FE of 24.0%and FEHCOOH of 63.1%).Moreover,the enhancing effect of alkyl phosphoric acid functionalization is found to be closely related to the length of alkyl chains.By virtue of comprehensive experimental characterizations and molecular dynamics simulations,it is revealed that the modification of alkyl phosphoric acids significantly alters the interface microenvironment of the electrocatalyst,which changes the electrocatalyst surface from hydrophilic and aerophobic to hydrophobic and aerophilic.In this case,the water molecules are pushed away and more CO_(2) molecules are trapped,increasing local CO_(2) concentration at In_(2)O_(3) active sites,thus leading to the significantly enhanced CO_(2)RR and suppressed HER.This work highlights the importance of regulating the interfacial microenvironment of inorganic catalysts by molecular surface functionalization as a means for promoting the electrochemical performance in electrosynthesis and beyond.
基金supported by the Special Environmental Research Funds for Public Welfare(No.201209053)
文摘The study provides insight into the combined effect of sorbent surface functionalities and microporosity on2,2 ′,4,4 ′-tetrabromodiphenyl ether (BDE-47) sorption onto biochars. A series of biochars prepared underdifferent conditionswere used to test their sorption behaviorswith BDE-47. The extents of sorption behaviorswere parameterized in terms of the single-point adsorption equilibrium constant (Koc ) at three equilibrium concentration (C e ) levels (0.001Sw (solubility), 0.005Sw , and 0.05Sw )whichwasdetermined using the Freundlich model. To elucidate the concentration-dependentdominant mechanisms for BDE-47 sorption onto biochars, K ocwas correlatedwith four major parameters using multiple parameter linear analysis accompaniedwith significance testing. The results indicated that at low concentration (Ce = 0.001Sw ), the surface microporosity term,which represented a pore-filling mechanism, contributed significantly to this relationship,while as concentrationwas increased to higher levels, surface functionality related to surface adsorption began to take thedominant role,whichwas further confirmed by the results of Polanyi-based modeling. Given the above results, adual mode model based on Dubinin-Radushkevich andde Boer-Zwikker equationswas adopted to quantitatively assess the changes of significance of surface adsorption aswell as that of pore fillingwith sorption processdevelopment. In addition, UV spectra of four typical aromatic compoundswhich represented the key structural fragments of biochars before and after interactionswith BDE-47were analyzed todetermine the active functional groups and supply complementary evidence for thedominant interaction force for surface adsorption, based onwhich π-π electron-donor-acceptor interactionwas proposed to contribute greatly to surface adsorption.
基金We would like to thank the National Science Foundation CBET (No. 1512598), the NSF CAREER Award CBET (No. 1653925) and the American Heart Association (No. 16SDG26940002) for funding support. Finally, we would also like to thank Stacie Chen and Spencer Mamer for stimulating conversation and advice about the paper.
文摘Surface functionalization is a widely adopted technique for surface modification which allows researchers to customize surfaces to integrate with their research. Surface functionalization has been used recently to adapt surfaces to integrate with biological materials specifically to isolate cells or mimic biological tissues through cell patterning. Cell isolation and cell patterning both can be integrated with extant techniques or surfaces to customize the research to whatever needs to be tested. Substrates such as metals, biologically mimicking surfaces, environmental responsive surfaces, and even three-dimensional surfaces such as hydrogels have all been adapted to allow for functionalization for both patterning and isolation. In this review we have described both the advantages and disadvantages of these techniques and the related chemistries to better understand these tools and how best to apply them in the hope that we can further expand upon the research in the field.
基金financially supported by the National Natural Science Foundation of China(52022043 and 21868011)Tsinghua University-Peking Union Medical College Hospital Initiative Scientific Research Program(20191080593)+2 种基金Precision Medicine Foundation,Tsinghua University,China(10001020107)the National Key R&D Program of China(2017YFC1103800)Research Fund of State Key Laboratory of Tribology,Tsinghua University,China(SKLT2022C18).
文摘Osteoarthritis is associated with the significantly increased friction of the joint,which results in progressive and irreversible damage to the articular cartilage.A synergistic therapy integrating lubrication enhancement and drug delivery is recently proposed for the treatment of early-stage osteoarthritis.In the present study,bioinspired by the self-adhesion performance of mussels and super-lubrication property of articular cartilages,a biomimetic self-adhesive dopamine methacrylamide-poly(2-methacryloyloxyethyl phosphorylcholine)(DMA-MPC)copolymer was designed and synthesized via free radical polymerization.The copolymer was successfully modified onto the surface of biodegradable mesoporous silica nanoparticles(bMSNs)by the dip-coating method to prepare the dual-functional nanoparticles(bMSNs@DMA-MPC),which were evaluated using a series of surface characterizations including the transmission electron microscope(TEM),Fourier transform infrared(FTIR)spectrum,thermogravimetric analysis(TGA),X-ray photoelectron spectroscopy(XPS),etc.The tribological test and in vitro drug release test demonstrated that the developed nanoparticles were endowed with improved lubrication performance and achieved the sustained release of an anti-inflammatory drug,i.e.,diclofenac sodium(DS).In addition,the in vitro biodegradation test showed that the nanoparticles were almost completely biodegraded within 10 d.Furthermore,the dual-functional nanoparticles were biocompatible and effectively reduced the expression levels of two inflammation factors such as interleukin-1β(IL-1β)and interleukin-6(IL-6).In summary,the surface functionalized nanoparticles with improved lubrication and local drug release can be applied as a potential intra-articularly injected biolubricant for synergistic treatment of early-stage osteoarthritis.
基金supported by the National Natural Science Foundation of China (No.52006054)the State Key Laboratory of Engines at Tianjin University (No.K2021-05)+1 种基金the European Union’s projects MODALES (No.815189)nPETS (No.954377)
文摘The thermal deactivation of diesel soot particles exerts a significant influence on the control strategy for the regeneration of diesel particulate filters(DPFs).This work focused on the changes in the surface functional groups,carbon chemical state,and graphitization degree during thermal treatment in an inert gas environment at intermediate temperatures of 600℃,800℃,and 1000℃ and explore the chemical species that were desorbed from the diesel soot surface during thermal treatment using a thermogravimetric analyser coupled with a gas-chromatograph mass spectrometer(TGA-GC/MS).The surface functional groups and carbon chemical statewere characterized using Fourier transform infrared spectroscopy(FT-IR)and X-ray photoelectron spectroscopy(XPS).The graphitization degree was evaluated by means of Raman spectroscopy(RS).The concentrations of aliphatic C–H,C–OH,C=O,and O–C=O groups are reduced for diesel soot and carbon black when increasing the thermal treatment temperature,while the sp^(2)/sp^(3) hybridized ratio and graphitization degree enhance.These results provide comprehensive evidence of the decreased reactivity of soot samples.Among oxygenated functional groups,the percentage reduction during thermal treatment is the largest for the O–C=O groups owing to its worst thermodynamic stability.TGA-GC/MS results show that the aliphatic and aromatic chains and oxygenated species would be desorbed from the soot surface during 1000℃ thermal treatment of diesel soot.
基金This work was supported by the National Natural Science Foundation of China(No.61772441)the Science and Technology Planning Project of Fujian Province,China(No.2020H6003)+2 种基金the Xiamen Municipal Science and Technology Project,China(No.3502Z20193015)the Fund of the Aviation Key Laboratory of Science and Technology on Inertia,China(No.20180868001)the Fund of Fujian Innovation Center of Additive Manufacturing,China(No.ZCZZ202-31).
文摘Convenient and integration fabrication process is a key issue for the application of functional nanofibers.A surface functionalization method was developed based on coaxial electrospinning to produce ultraviolet(UV)protection nanofibers.The titanium dioxide(TiO_(2))nanoparticles suspension was delivered through the shell channel of the coaxial spinneret,by which the aggregation of TiO_(2) nanoparticles was overcome and the distribution uniformity on the surface of polyethylene oxide(PEO)nanofiber was obtained.With the content of TiO_(2) increasing from 0 to 3%(mass fraction),the average diameter of nanofibers increased from(380±30)nm to(480±100)nm.The surface functionalization can be realized during the electrospinning process to gain PEO/TiO_(2) composite nanofibers directly.The uniform distribution of TiO_(2) nanoparticles on the surface of nanofibers enhanced the UV absorption and resistance performance.The maximum UV protection factor(UPF)value of composite nanofibers reaches 2751.This work presented a novel surface-functionalized way for the preparation of composite nanofiber,which has great application potential in the field of micro/nano system integration fabrication.
文摘A generic method was described to change surface biocompatibihty by introducing reactive functional groups onto surfaces of polymeric substrates and covalently binding them with biomolecules.A block copolymer with protected carboxylic acid functionality,poly(styrene-b-tert-butyl acrylate)(PS-PtBA),was spin coated from solutions in toluene on a bioinert polystyrene(PS) substrate to form a bilayer structure:a surface layer of the poly(tert-butyl acrylate)(PtBA) blocks that order at the air-polymer interface and a bottom layer of the PS blocks that entangle with the PS substrate.The thickness of the PtBA layer and the area density of tert-butyl ester groups of PtBA increased linearly with the concentration of the spin coating solution until a 2 nm saturated monolayer coverage of PtBA was achieved at the concentration of 0.4%W/W.The protected carboxylic acid groups were generated by exposing the tert-butyl ester groups of PtBA to trifluoroacetic acid (TFA) for bioconjugation with FMRF peptides via amide bonds.The yield of the bioconjugation reaction for the saturated surface was calculated to be 37.1%based on X-ray photoelectron spectroscopy(XPS) measurements.The success of each functionalization step was demonstrated and characterized by XPS and contact angle measurements.This polymer functionalization/modification concept can be virtually applied to any polymeric substrate by choosing appropriate functional block copolymers and biomolecules to attain novel biocompatibility.
基金the European Research Council starting grant “Cell Hybridge” for financial support under the Horizon2020 framework program (Grant#637308)the Province of Limburg for support and funding
文摘Melt extrusion-based additive manufacturing(ME-AM)is a promising technique to fabricate porous scaffolds for tissue engi-neering applications.However,most synthetic semicrystalline polymers do not possess the intrinsic biological activity required to control cell fate.Grafting of biomolecules on polymeric surfaces of AM scaffolds enhances the bioactivity of a construct;however,there are limited strategies available to control the surface density.Here,we report a strategy to tune the surface density of bioactive groups by blending a low molecular weight poly(ε-caprolactone)5k(PCL5k)containing orthogonally reactive azide groups with an unfunctionalized high molecular weight PCL75k at different ratios.Stable porous three-dimensional(3D)scaf-folds were then fabricated using a high weight percentage(75 wt.%)of the low molecular weight PCL 5k.As a proof-of-concept test,we prepared films of three different mass ratios of low and high molecular weight polymers with a thermopress and reacted with an alkynated fluorescent model compound on the surface,yielding a density of 201-561 pmol/cm^(2).Subsequently,a bone morphogenetic protein 2(BMP-2)-derived peptide was grafted onto the films comprising different blend compositions,and the effect of peptide surface density on the osteogenic differentiation of human mesenchymal stromal cells(hMSCs)was assessed.After two weeks of culturing in a basic medium,cells expressed higher levels of BMP receptor II(BMPRII)on films with the conjugated peptide.In addition,we found that alkaline phosphatase activity was only significantly enhanced on films contain-ing the highest peptide density(i.e.,561 pmol/cm^(2)),indicating the importance of the surface density.Taken together,these results emphasize that the density of surface peptides on cell differentiation must be considered at the cell-material interface.Moreover,we have presented a viable strategy for ME-AM community that desires to tune the bulk and surface functionality via blending of(modified)polymers.Furthermore,the use of alkyne-azide“click”chemistry enables spatial control over bioconjugation of many tissue-specific moieties,making this approach a versatile strategy for tissue engineering applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.51272237,51272231,and 51010002)the China Postdoctoral Science Foundation(Grant Nos.2012M520063,2013T60587,and Bsh1201016)
文摘Nitrogen-doped diamond-like carbon (DLC:N) films prepared by the filtered cathodic vacuum arc technology are functionalized with various chemical molecules including dopamine (DA), 3-Aminobenzeneboronic acid (APBA), and adenosine triphosphate (ATP), and the impacts of surface functionalities on the surface morphologies, compositions, microstructures, and cell compatibility of the DLC:N films are systematically investigated. We demonstrate that the surface groups of DLC:N have a significant effect on the surface and structural properties of the film. The activity of PC12 cells depends on the particular type of surface functional groups of DLC:N films regardless of surface roughness and wettability. Our research offers a novel way for designing functionalized carbon films as tailorable substrates for biosensors and biomedical engineering applications.