Seismic ray tracing in anisotropic media with irregular surface is crucial for the exploration of the fine crustal structure. Elliptically anisotropic medium is the type of anisotropic media with only four independent...Seismic ray tracing in anisotropic media with irregular surface is crucial for the exploration of the fine crustal structure. Elliptically anisotropic medium is the type of anisotropic media with only four independent elastic parameters. Usually, this medium can be described by only the vertical phase velocity and the horizontal phase velocity for seismic wave propagation. Model parameteri- zation in this study is described by flexible triangular grids, which is beneficial for the description of irregular surface with high degree of approximation. Both the vertical and horizontal phase velocities are defined in the triangular grids, respectively, which are used for the description of phase velocity distribution everywhere in the model by linear interpolation. We develop a shooting ray tracing method of turning wave in the elliptically anisotropic media with irregular surface. Runge-Kutta method is applied to solve the partial differential equation of seismic ray in elliptically anisotropic media. Linearly modified method is used for adjusting emergent phase angles in the shooting scheme. Numerical tests demonstrate that ray paths coincide well with analytical trajectories in trans- versely homogeneous elliptically anisotropic media. Seis- mic ray tracing results in transversely inhomogeneous elliptically anisotropic media demonstrate that our method is effective for further first-arrival tomography in ellipti- cally anisotropic media with an irregular surface.展开更多
In this article, the overset grid assembly method is improved to efficiently solve several critical problems that occur when applying overset grids to the complicated geometries and moving body. First, instead of usin...In this article, the overset grid assembly method is improved to efficiently solve several critical problems that occur when applying overset grids to the complicated geometries and moving body. First, instead of using the two-step searching (i.e. cut and paste), a single-step searching method based on the grid cell size is proposed to modify holes and optimize the grid overlapping automatically. Second, discrepancies between the wall surface representations, where the grids overlap, are handled by introducing the wall's normal directions to the hole-map and projecting the interpolated points on the recipient mesh into the donor mesh. Finally, the dynamic overset method is modified to address the complex moving body problem. At every time step, the initial hole surface of the previous time step is dynamically adjusted to accomplish hole cutting and avoid the time consuming hole-map procedure. Numerical experiments show that the enhanced overset grid assembly method obtains satisfactory results.展开更多
基金financial support for this work contributed by the National Key Research and Development Program of China(Grants Nos.2016YFC0600101,2016YFC0600201 and 2016YFC0600302)the National Natural Science Foundation of China(Grants Nos.41522401 and 41474068)
文摘Seismic ray tracing in anisotropic media with irregular surface is crucial for the exploration of the fine crustal structure. Elliptically anisotropic medium is the type of anisotropic media with only four independent elastic parameters. Usually, this medium can be described by only the vertical phase velocity and the horizontal phase velocity for seismic wave propagation. Model parameteri- zation in this study is described by flexible triangular grids, which is beneficial for the description of irregular surface with high degree of approximation. Both the vertical and horizontal phase velocities are defined in the triangular grids, respectively, which are used for the description of phase velocity distribution everywhere in the model by linear interpolation. We develop a shooting ray tracing method of turning wave in the elliptically anisotropic media with irregular surface. Runge-Kutta method is applied to solve the partial differential equation of seismic ray in elliptically anisotropic media. Linearly modified method is used for adjusting emergent phase angles in the shooting scheme. Numerical tests demonstrate that ray paths coincide well with analytical trajectories in trans- versely homogeneous elliptically anisotropic media. Seis- mic ray tracing results in transversely inhomogeneous elliptically anisotropic media demonstrate that our method is effective for further first-arrival tomography in ellipti- cally anisotropic media with an irregular surface.
基金National Natural Science Foundation of China (90716010)
文摘In this article, the overset grid assembly method is improved to efficiently solve several critical problems that occur when applying overset grids to the complicated geometries and moving body. First, instead of using the two-step searching (i.e. cut and paste), a single-step searching method based on the grid cell size is proposed to modify holes and optimize the grid overlapping automatically. Second, discrepancies between the wall surface representations, where the grids overlap, are handled by introducing the wall's normal directions to the hole-map and projecting the interpolated points on the recipient mesh into the donor mesh. Finally, the dynamic overset method is modified to address the complex moving body problem. At every time step, the initial hole surface of the previous time step is dynamically adjusted to accomplish hole cutting and avoid the time consuming hole-map procedure. Numerical experiments show that the enhanced overset grid assembly method obtains satisfactory results.