The resonance behaviors of local surface plasmon resonance in Au monomer and dimer are characterized sys- temically by electron energy loss spectroscopy in a scanning transmission electron microscope. The measured abs...The resonance behaviors of local surface plasmon resonance in Au monomer and dimer are characterized sys- temically by electron energy loss spectroscopy in a scanning transmission electron microscope. The measured absorption range is about 20nm larger than the physical size of the Au nanoparticles and the resonance peak energy shows a red shift when the electron beam passes off the nanoparticles. The Au dimer displays similar behaviors. Numerical simulation also reproduces those experimental results.展开更多
We propose a periodic structure as an extra absorption layer(i.e., absorber) based on surface plasmon resonance effects, enhancing dual-band absorption in both middle wavelength infrared(MWIR) and long wavelength ...We propose a periodic structure as an extra absorption layer(i.e., absorber) based on surface plasmon resonance effects, enhancing dual-band absorption in both middle wavelength infrared(MWIR) and long wavelength infrared(LWIR)regions. Periodic gold disks are selectively patterned onto the top layer of suspended SiN/VO_2/SiN sandwich-structure.We employ the finite element method to model this structure in COMSOL Multiphysics including a proposed method of modulating the absorption peak. Simulation results show that the absorber has two absorption peaks at wavelengths λ =4.8 μm and λ = 9 μm with the absorption magnitudes more than 0.98 and 0.94 in MWIR and LWIR regions, respectively. In addition, the absorber achieves broad spectrum absorption in LWIR region, in the meanwhile, tunable dual-band absorption peaks can be achieved by variable heights of cavity as well as diameters and periodicity of disk. Thus, this designed absorber can be a good candidate for enhancing the performance of dual band uncooled infrared detector, furthermore, the manufacturing process of cavity can be easily simplified so that the reliability of such devices can be improved.展开更多
This paper experimentally and theoretically investigates the effect of the underlayer medium on tuning of the surface plasmon resonance (SPR) wavelength of silver island films, and the effect of substrate temperatur...This paper experimentally and theoretically investigates the effect of the underlayer medium on tuning of the surface plasmon resonance (SPR) wavelength of silver island films, and the effect of substrate temperature on the morphologies and optical properties of the films. From the absorption spectra of single Ag with various thickness and overcoated (Ag/TiO2) films deposited on glass substrates at various substrate temperatures by RF magnetron sputtering, we demonstrate that the surface plasmon resonance wavelength can be made tunable by changing the underlayer medium, the thickness of metal layer and the substrate temperature. By varying substrate temperatures, the interparticle coupling effects on plasmon resonances of nanosilver particles enhance as the spacing between the particles reduces. When the substrate temperature is up to 500 ℃, the absorption peak decreases sharply and shifts to shorter wavelength side due to the severe coalescence between silver islands in the film.展开更多
In this paper, we propose a new form of nanostructures with Al film deposited on a patterned dielectric material for generating structural color, which is induced by local surface plasmonic resonant(LSPR) absorption i...In this paper, we propose a new form of nanostructures with Al film deposited on a patterned dielectric material for generating structural color, which is induced by local surface plasmonic resonant(LSPR) absorption in sub-wavelengthindented hole/ring arrays. Unlike other reported results obtained by using focus ion beam(FIB) to create metallic nanostructures, the nano-sized hole/ring arrays in Al film in this work are replicated by high resolution electron beam lithography(EBL) combined with self-aligned metallization. Clear structural color is observed and systematically studied by numerical simulations as well as optical characterizations. The central color is strongly related to the geometric size, which provides us with good opportunities to dye the colorless Al surface by controlling the hole/ring dimensions(both diameter and radius), and to open up broad applications in display, jewelry decoration, green production of packing papers, security code,and counterfeits prevention.展开更多
Suspended gold nanoparticles have been synthesized via electrochemical method.Fluorescence excitation and emission spectra were obtained using a spectrofluorophotometer.With varying the excitation wavelength,an emissi...Suspended gold nanoparticles have been synthesized via electrochemical method.Fluorescence excitation and emission spectra were obtained using a spectrofluorophotometer.With varying the excitation wavelength,an emission peak fixed at 485 nm has always been observed.We believe that this peak is attributed to the surface plasmon resonance.When the detection wavelength was fixed at 485 nm (0.619×10 15 Hz),a double frequency exciting peak at 242 nm(2×0.619×10 15 Hz), a 3/2 fraction frequency exciting peak at 330 nm (about 3/2×0.619×10 15 Hz)and a 3/4 fraction frequency exciting peak at 640 nm(3/4×0.619×10 15 Hz)display.The nonlinear exciting peak at 640 nm corresponds to the two-photon absorption.Therefore,as the excitation wavelength is at 320 and 640 nm respectively,single-photon and two-photon absorption induced surface plasmon resonance emission peaks were observed. These nonlinear surface plasmon resonance emission characters of Au colloidal nanoparticles make it possible to enhance the sensitivity of conventional surface plasmon resonance device.展开更多
Solar steam generation(SSG)is a potential technology for freshwater production,which is expected to address the global water shortage problem.Some noble metals with good photothermal conversion performance have receiv...Solar steam generation(SSG)is a potential technology for freshwater production,which is expected to address the global water shortage problem.Some noble metals with good photothermal conversion performance have received wide concerns in SSG,while high cost limits their practical applications for water purification.Herein,a self-supporting nanoporous copper(NP-Cu)film was fabricated by one-step dealloying of a specially designed Al_(98)Cu_(2)precursor with a dilute solid solution structure.In-situ and ex-situ characterizations were performed to reveal the phase and microstructure evolutions during dealloying.The NP-Cu film shows a unique three-dimensional bicontinuous ligament-channel structure with high porosity(94.8%),multi scale-channels and nanoscale ligaments(24.2±4.4nm),leading to its strong broadband absorption over the 200–2500 nm wavelength More importantly,the NP-Cu film exhibits excellent SSG performance with high evaporation rate,superior efficiency and good stability.The strong desalination ability of NP-Cu also manifests its potential applications in seawater desalination.The related mechanism has been rationalized based upon the nanoporous network,localized surface plasmon resonance effect and hydrophilicity.展开更多
A scheme to enhance near-infrared band absorption of a Si nanoparticle by placing the Si nanoparticle into a designed gold nanostructure is proposed. Three-dimensional (3D) finite-difference time-domain simulations ...A scheme to enhance near-infrared band absorption of a Si nanoparticle by placing the Si nanoparticle into a designed gold nanostructure is proposed. Three-dimensional (3D) finite-difference time-domain simulations are employed to calcu- late the absorption spectrum of the Si nanostructure and maximize it by generating alternate designs. The results show that in the near-infrared region over 700 nm, the absorption of a pure Si nanoparticle is very low, but when the same nanoparticle is placed within an optimally designed gold nanostructure, its absorption cross section can be enhanced by more than two orders of magnitude in the near-infrared band.展开更多
Suspended gold nanorods have been synthesized via an electrochemical method.The absorption spectrum features show two peaks at 520nm and 650nm,which result from the transverse and longitudinal surface plasmon resonanc...Suspended gold nanorods have been synthesized via an electrochemical method.The absorption spectrum features show two peaks at 520nm and 650nm,which result from the transverse and longitudinal surface plasmon resonance.The spectra at different growth stages indicate that the absorption peaks split and shift after electrolysis,which correspond to the anisotropy growth of nanorods.The quasi-static calculation results indicate that with increasing the mean aspect ratio of the nanorods,the longer wavelength absorption peak decreases and red shifts obviously,whereas the shorter wavelength absorption peak blue shifts slightly.展开更多
The resonance absorption of a multilayered bi-grating which consists of thin-film corrugated periodically in two directions is investigated. The absorption in a multilayered thin-film bi-grating has been of considerab...The resonance absorption of a multilayered bi-grating which consists of thin-film corrugated periodically in two directions is investigated. The absorption in a multilayered thin-film bi-grating has been of considerable interest since we can expect more complex behaviors in the absorption phenomen by virtue of the presence of double periodicity and multilayer structure. In solving the problem, we employed a computational technique based on modal expansion. Taking a sandwiched structure /Ag/SiO2/Ag/ for an example, we observed: 1) excitation of a single-interface surface plasmon mode at the lit surface of the 1st Ag layer with strong field enhancement for thick enough Ag layer case;2) excitation of coupled short-range or long-range surface plasmon modes at each surface between vacuum and Ag layers with strong field enhancements for thin enough Ag layer cases no matter with the thickness of SiO2 layers;3) enhancements of field at surfaces between Ag and SiO2 layers in some cases related with the thickness of SiO2 layers. The coupled plasmon modes were resulted by the resonance waves on four surfaces in these cases.展开更多
A metallic binary-groove gratings, which can be exploited to absorb light at C-band and sense materials with refractive index (1.0 - 1.2), is proposed and investigated numerically. Both ultra-high absorption (99.937%)...A metallic binary-groove gratings, which can be exploited to absorb light at C-band and sense materials with refractive index (1.0 - 1.2), is proposed and investigated numerically. Both ultra-high absorption (99.937%) and sensitivity (1600 nm/RIU) are achieved.展开更多
具有多谱带完美吸收效应的超构材料在光学滤波和折射率传感等多种应用中是理想的材料。提出了一种由银金属上的氮化硅介电纳米空腔阵列组成的多谱带窄带完美吸收超构材料。有限元仿真给出了四个最高可达99.9%的吸收峰,以及最小达到0.74...具有多谱带完美吸收效应的超构材料在光学滤波和折射率传感等多种应用中是理想的材料。提出了一种由银金属上的氮化硅介电纳米空腔阵列组成的多谱带窄带完美吸收超构材料。有限元仿真给出了四个最高可达99.9%的吸收峰,以及最小达到0.74 nm的吸收峰宽。这些吸收谱带来自于表面晶格模式和三个表面等离激元极化子模式。此外,这些模式的谱峰对超构材料几何外形和环境介质光学参数的变化敏感,从而在可见光-近红外范围内可以被调控。用于折射率传感时,其具有347 nm每折射率单位的灵敏度,Figure of Merit达到469。这些特性令这一材料适用于光学滤波器和折射率传感器等用途。展开更多
Lanthanum hexaboride nanopartieles, with high emission electrons in cathode materials and peculiar blocking near infrared wavelengths, were applied for many aspects. Based on the quasi-static approximation of Mie theo...Lanthanum hexaboride nanopartieles, with high emission electrons in cathode materials and peculiar blocking near infrared wavelengths, were applied for many aspects. Based on the quasi-static approximation of Mie theory, the size dependent optical prop- erties of LaB6 nanoparticles were researched, such as refractive index n(ω), extinction coefficient k(ω), reflectivity R(ω), absorption coefficient a(ω), and electron energy loss L(ω). Due to the localized surface plasmon resonance (LSPR), the extinction coefficient k(ω) and absorption coefficient a(ω) depended on the size, and the LSPR peaks red-shifted with sizes increased, which was different from that of bulk materials. In addition, electron energy-loss spectrum L(co) showed electrons oscillation reinforced, since electrons absorbed the photon energy and generated resonance. Further, reftectivity R(ω) and refractive index n(ω) indicated that the light in near infrared region could not be propagated on the surface of LaB6 materials, which exhibited metallic behaviors. So the resonance peak of LaB6 nanoparticle was located in near-infrared region, making use of this property for solar control glazing and heat-shielding application.展开更多
We used a diamond anvil cell(DAC)to control the deformation of synthesized copper nanorods and silver nanoparticles.And we measured the surface plasmon resonance of copper nanorods and silver nanoparticles,which exhib...We used a diamond anvil cell(DAC)to control the deformation of synthesized copper nanorods and silver nanoparticles.And we measured the surface plasmon resonance of copper nanorods and silver nanoparticles,which exhibit redshifts or blueshifts.The surface plasmon resonance shows an abnormal blue shift for both copper nanorods and silver nanoparticles.The solvents of copper nanorods and silver nanoparticles are n-hexane and water,where the pressure loads include quasi-hydrostatic and non-hydrostatic.展开更多
基金Supported by the National Basic Research Program of China under Grant Nos 2013CB932904 and 2012CB932302the National Natural Science Foundation of China under Grant No 11274365
文摘The resonance behaviors of local surface plasmon resonance in Au monomer and dimer are characterized sys- temically by electron energy loss spectroscopy in a scanning transmission electron microscope. The measured absorption range is about 20nm larger than the physical size of the Au nanoparticles and the resonance peak energy shows a red shift when the electron beam passes off the nanoparticles. The Au dimer displays similar behaviors. Numerical simulation also reproduces those experimental results.
基金supported by the One Hundred Talents Program of the Chinese Academy of Sciencesthe National Natural Science Foundation of China(Grant Nos.61376083 and 61307077)+1 种基金the China Postdoctoral Science Foundation(Grant Nos.2013M530613 and 2015T80080)the Guangxi Key Laboratory of Precision Navigation Technology and Application(Grant Nos.DH201505,DH201510,and DH201511)
文摘We propose a periodic structure as an extra absorption layer(i.e., absorber) based on surface plasmon resonance effects, enhancing dual-band absorption in both middle wavelength infrared(MWIR) and long wavelength infrared(LWIR)regions. Periodic gold disks are selectively patterned onto the top layer of suspended SiN/VO_2/SiN sandwich-structure.We employ the finite element method to model this structure in COMSOL Multiphysics including a proposed method of modulating the absorption peak. Simulation results show that the absorber has two absorption peaks at wavelengths λ =4.8 μm and λ = 9 μm with the absorption magnitudes more than 0.98 and 0.94 in MWIR and LWIR regions, respectively. In addition, the absorber achieves broad spectrum absorption in LWIR region, in the meanwhile, tunable dual-band absorption peaks can be achieved by variable heights of cavity as well as diameters and periodicity of disk. Thus, this designed absorber can be a good candidate for enhancing the performance of dual band uncooled infrared detector, furthermore, the manufacturing process of cavity can be easily simplified so that the reliability of such devices can be improved.
基金Project supported by the Distinguished Youth Foundation of Hunan Province,China (Grant No. 03JJY1008)the Science Foundation for Post-doctorate of China,(Grant No. 2004035083)the Natural Science Foundation of Hunan Province,China(Grant No. 06JJ2034)
文摘This paper experimentally and theoretically investigates the effect of the underlayer medium on tuning of the surface plasmon resonance (SPR) wavelength of silver island films, and the effect of substrate temperature on the morphologies and optical properties of the films. From the absorption spectra of single Ag with various thickness and overcoated (Ag/TiO2) films deposited on glass substrates at various substrate temperatures by RF magnetron sputtering, we demonstrate that the surface plasmon resonance wavelength can be made tunable by changing the underlayer medium, the thickness of metal layer and the substrate temperature. By varying substrate temperatures, the interparticle coupling effects on plasmon resonances of nanosilver particles enhance as the spacing between the particles reduces. When the substrate temperature is up to 500 ℃, the absorption peak decreases sharply and shifts to shorter wavelength side due to the severe coalescence between silver islands in the film.
基金partially supported by the National Natural Science Foundation of China(Grant No.61205148)
文摘In this paper, we propose a new form of nanostructures with Al film deposited on a patterned dielectric material for generating structural color, which is induced by local surface plasmonic resonant(LSPR) absorption in sub-wavelengthindented hole/ring arrays. Unlike other reported results obtained by using focus ion beam(FIB) to create metallic nanostructures, the nano-sized hole/ring arrays in Al film in this work are replicated by high resolution electron beam lithography(EBL) combined with self-aligned metallization. Clear structural color is observed and systematically studied by numerical simulations as well as optical characterizations. The central color is strongly related to the geometric size, which provides us with good opportunities to dye the colorless Al surface by controlling the hole/ring dimensions(both diameter and radius), and to open up broad applications in display, jewelry decoration, green production of packing papers, security code,and counterfeits prevention.
文摘Suspended gold nanoparticles have been synthesized via electrochemical method.Fluorescence excitation and emission spectra were obtained using a spectrofluorophotometer.With varying the excitation wavelength,an emission peak fixed at 485 nm has always been observed.We believe that this peak is attributed to the surface plasmon resonance.When the detection wavelength was fixed at 485 nm (0.619×10 15 Hz),a double frequency exciting peak at 242 nm(2×0.619×10 15 Hz), a 3/2 fraction frequency exciting peak at 330 nm (about 3/2×0.619×10 15 Hz)and a 3/4 fraction frequency exciting peak at 640 nm(3/4×0.619×10 15 Hz)display.The nonlinear exciting peak at 640 nm corresponds to the two-photon absorption.Therefore,as the excitation wavelength is at 320 and 640 nm respectively,single-photon and two-photon absorption induced surface plasmon resonance emission peaks were observed. These nonlinear surface plasmon resonance emission characters of Au colloidal nanoparticles make it possible to enhance the sensitivity of conventional surface plasmon resonance device.
基金financial support by the Key Research and Development Program of Shandong Province(2021ZLGX01)the support of Taishan Scholar Foundation of Shandong Province+1 种基金the Natural Science Foundation of Shandong Province(ZR2021QE229,ZR2022QB169)the Postdoctoral Science foundation of China(2022M710077)。
文摘Solar steam generation(SSG)is a potential technology for freshwater production,which is expected to address the global water shortage problem.Some noble metals with good photothermal conversion performance have received wide concerns in SSG,while high cost limits their practical applications for water purification.Herein,a self-supporting nanoporous copper(NP-Cu)film was fabricated by one-step dealloying of a specially designed Al_(98)Cu_(2)precursor with a dilute solid solution structure.In-situ and ex-situ characterizations were performed to reveal the phase and microstructure evolutions during dealloying.The NP-Cu film shows a unique three-dimensional bicontinuous ligament-channel structure with high porosity(94.8%),multi scale-channels and nanoscale ligaments(24.2±4.4nm),leading to its strong broadband absorption over the 200–2500 nm wavelength More importantly,the NP-Cu film exhibits excellent SSG performance with high evaporation rate,superior efficiency and good stability.The strong desalination ability of NP-Cu also manifests its potential applications in seawater desalination.The related mechanism has been rationalized based upon the nanoporous network,localized surface plasmon resonance effect and hydrophilicity.
基金Project supported by the National Key Basic Research and Development Program of China(Grant No.2013CB632704)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.Y1 V2013L11)
文摘A scheme to enhance near-infrared band absorption of a Si nanoparticle by placing the Si nanoparticle into a designed gold nanostructure is proposed. Three-dimensional (3D) finite-difference time-domain simulations are employed to calcu- late the absorption spectrum of the Si nanostructure and maximize it by generating alternate designs. The results show that in the near-infrared region over 700 nm, the absorption of a pure Si nanoparticle is very low, but when the same nanoparticle is placed within an optimally designed gold nanostructure, its absorption cross section can be enhanced by more than two orders of magnitude in the near-infrared band.
基金FundedbytheNationalNaturalScienceFoundationofChi na (No .6 0 2 770 0 3)
文摘Suspended gold nanorods have been synthesized via an electrochemical method.The absorption spectrum features show two peaks at 520nm and 650nm,which result from the transverse and longitudinal surface plasmon resonance.The spectra at different growth stages indicate that the absorption peaks split and shift after electrolysis,which correspond to the anisotropy growth of nanorods.The quasi-static calculation results indicate that with increasing the mean aspect ratio of the nanorods,the longer wavelength absorption peak decreases and red shifts obviously,whereas the shorter wavelength absorption peak blue shifts slightly.
文摘The resonance absorption of a multilayered bi-grating which consists of thin-film corrugated periodically in two directions is investigated. The absorption in a multilayered thin-film bi-grating has been of considerable interest since we can expect more complex behaviors in the absorption phenomen by virtue of the presence of double periodicity and multilayer structure. In solving the problem, we employed a computational technique based on modal expansion. Taking a sandwiched structure /Ag/SiO2/Ag/ for an example, we observed: 1) excitation of a single-interface surface plasmon mode at the lit surface of the 1st Ag layer with strong field enhancement for thick enough Ag layer case;2) excitation of coupled short-range or long-range surface plasmon modes at each surface between vacuum and Ag layers with strong field enhancements for thin enough Ag layer cases no matter with the thickness of SiO2 layers;3) enhancements of field at surfaces between Ag and SiO2 layers in some cases related with the thickness of SiO2 layers. The coupled plasmon modes were resulted by the resonance waves on four surfaces in these cases.
文摘A metallic binary-groove gratings, which can be exploited to absorb light at C-band and sense materials with refractive index (1.0 - 1.2), is proposed and investigated numerically. Both ultra-high absorption (99.937%) and sensitivity (1600 nm/RIU) are achieved.
基金The National Natural Science Foundation of China(Nos.61275153,61320106014)the Open Fund of Key Subject of Physics,Zhejiang Province(Nos.xkzwl12,xkzwl1521)the K.C.Wong Magna Fund of Ningbo University,China
基金National Natural Science Foundation of China(No.61675096)Fundamental Research Funds for the Centre Universities(No.30922010801)+1 种基金Fundamental Research Funds for NUST(No.TSXK2022D006)Postgraduate Research Practice Innovation Program of Jiangsu Province(No.KYCX23_0442)。
文摘具有多谱带完美吸收效应的超构材料在光学滤波和折射率传感等多种应用中是理想的材料。提出了一种由银金属上的氮化硅介电纳米空腔阵列组成的多谱带窄带完美吸收超构材料。有限元仿真给出了四个最高可达99.9%的吸收峰,以及最小达到0.74 nm的吸收峰宽。这些吸收谱带来自于表面晶格模式和三个表面等离激元极化子模式。此外,这些模式的谱峰对超构材料几何外形和环境介质光学参数的变化敏感,从而在可见光-近红外范围内可以被调控。用于折射率传感时,其具有347 nm每折射率单位的灵敏度,Figure of Merit达到469。这些特性令这一材料适用于光学滤波器和折射率传感器等用途。
基金supported by National Natural Science Foundation of China(60907021,60977035,60877029)Tianjin Natural Science Foundation(11JCYBJC00300)
文摘Lanthanum hexaboride nanopartieles, with high emission electrons in cathode materials and peculiar blocking near infrared wavelengths, were applied for many aspects. Based on the quasi-static approximation of Mie theory, the size dependent optical prop- erties of LaB6 nanoparticles were researched, such as refractive index n(ω), extinction coefficient k(ω), reflectivity R(ω), absorption coefficient a(ω), and electron energy loss L(ω). Due to the localized surface plasmon resonance (LSPR), the extinction coefficient k(ω) and absorption coefficient a(ω) depended on the size, and the LSPR peaks red-shifted with sizes increased, which was different from that of bulk materials. In addition, electron energy-loss spectrum L(co) showed electrons oscillation reinforced, since electrons absorbed the photon energy and generated resonance. Further, reftectivity R(ω) and refractive index n(ω) indicated that the light in near infrared region could not be propagated on the surface of LaB6 materials, which exhibited metallic behaviors. So the resonance peak of LaB6 nanoparticle was located in near-infrared region, making use of this property for solar control glazing and heat-shielding application.
基金This work was supported by the National Natural Science Foundation of China(No.11774124)the Technology Development Program of Jilin Province,China(No.20180101285JC)the Natural Science Foundation of Jilin Province,China(No.YDZJ202101ZYTS165).
文摘We used a diamond anvil cell(DAC)to control the deformation of synthesized copper nanorods and silver nanoparticles.And we measured the surface plasmon resonance of copper nanorods and silver nanoparticles,which exhibit redshifts or blueshifts.The surface plasmon resonance shows an abnormal blue shift for both copper nanorods and silver nanoparticles.The solvents of copper nanorods and silver nanoparticles are n-hexane and water,where the pressure loads include quasi-hydrostatic and non-hydrostatic.