Secondary electron emission(SEE)induced by the positive ion is an essential physical process to influence the dynamics of gas discharge which relies on the specific surface material.Surface charging has a significant ...Secondary electron emission(SEE)induced by the positive ion is an essential physical process to influence the dynamics of gas discharge which relies on the specific surface material.Surface charging has a significant impact on the material properties,thereby affecting the SEE in the plasma-surface interactions.However,it does not attract enough attention in the previous studies.In this paper,SEE dependent on the charged surface of specific materials is described with the computational method combining a density functional theory(DFT)model from the first-principle theory and the theory of Auger neutralization.The effect ofκ-Al2O3 surface charge,as an example,on the ion-induced secondary electron emission coefficient(SEEC)is investigated by analyzing the defect energy level and band structure on the charged surface.Simulation results indicate that,with the surface charge from negative to positive,the SEEC of a part of low ionization energy ions(such as Ei=12.6 eV)increases first and then decreases,exhibiting a nonlinear changing trend.This is quite different from the monotonic decreasing tendency observed in the previous model which simplifies the electronic structure.This irregular increase of the SEEC can be attributed to the lower escaped probability of orbital energy.The results further illustrate that the excessive charge could cause the bottom of the conduction band close to the valence band,thus leading to the decrease of the orbital energy occupied by the excited electrons.The nonlinear change of SEEC demonstrates a more realistic situation of how the electronic structure of material surface influences the SEE process.This work provides an accurate method of calculating SEEC from specific materials,which is urgent in widespread physical scenarios sensitive to surface materials,such as increasingly growing practical applications concerning plasma-surface interactions.展开更多
The aim of this study is to evaluate the uncertainty of 2πα and 2πβ surface emission rates using the windowless multiwire proportional counter method.This study used the Monte Carlo method (MCM) to validate the co...The aim of this study is to evaluate the uncertainty of 2πα and 2πβ surface emission rates using the windowless multiwire proportional counter method.This study used the Monte Carlo method (MCM) to validate the conventional Guide to the Expression of Uncertainty in Measurement (GUM) method.A dead time measurement model for the two-source method was established based on the characteristics of a single-channel measurement system,and the voltage threshold correction factor measurement function was indirectly obtained by fitting the threshold correction curve.The uncertainty in the surface emission rate was calculated using the GUM method and the law of propagation of uncertainty.The MCM provided clear definitions for each input quantity and its uncertainty distribution,and the simulation training was realized with a complete and complex mathematical model.The results of the surface emission rate uncertainty evaluation for four radioactive plane sources using both methods showed the uncertainty’s consistency E_(n)<0.070 for the comparison of each source,and the uncertainty results of the GUM were all lower than those of the MCM.However,the MCM has a more objective evaluation process and can serve as a validation tool for GUM results.展开更多
To enhance the accuracy of 2πα and 2πβ particle surface emission rate measurements and address the identification issues of nuclides in conventional methods, this study introduces two artificial neural network(ANN...To enhance the accuracy of 2πα and 2πβ particle surface emission rate measurements and address the identification issues of nuclides in conventional methods, this study introduces two artificial neural network(ANN) algorithms: back-propagation(BP) and genetic algorithm-based back-propagation(GA-BP). These algorithms classify pulse signals from distinct α and β particles. Their discrimination efficacy is assessed by simulating standard pulse signals and those produced by contaminated sources, mixing α and β particles within the detector. This study initially showcases energy spectrum measurement outcomes, subsequently tests the ANNs on the measurement and validation datasets, and contrasts the pulse shape discrimination efficacy of both algorithms. Experimental findings reveal that the proportional counter's energy resolution is not ideal, thus rendering energy analysis insufficient for distinguishing between 2πα and 2πβ particles. The BP neural network realizes approximately 99% accuracy for 2πα particles and approximately 95% for 2πβ particles, thus surpassing the GA-BP's performance. Additionally, the results suggest enhancing β particle discrimination accuracy by increasing the digital acquisition card's threshold lower limit. This study offers an advanced solution for the 2πα and 2πβ surface emission rate measurement method, presenting superior adaptability and scalability over conventional techniques.展开更多
Information is given on thermal radiation from the Sun, considered in practical engineering calculations of heat exchange. It was found that although the surface temperature of the Sun is assumed to be about 5800 K, t...Information is given on thermal radiation from the Sun, considered in practical engineering calculations of heat exchange. It was found that although the surface temperature of the Sun is assumed to be about 5800 K, the solar spectrum data measured by Kondratyev lead to a value of at least 7134 K. Such a higher value can be obtained by interpreting the Planck formula for the black radiation spectrum for the Kondratyev data. In addition, using the Stefan-Boltzmann law, the energetic emissivity of the Sun’s surface was determined to be 0.431. Furthermore, based on Petela’s formulae for exergy of thermal radiation, the exergetic emissivity of the Sun’s surface was also calculated at the level of 0.426.展开更多
Ammonia emission is one of the most important pathways of nitrogen loss from agricultural cultivated field. In this paper, we report the measurement of ammonia emission from paddy rice field obtained by surface applic...Ammonia emission is one of the most important pathways of nitrogen loss from agricultural cultivated field. In this paper, we report the measurement of ammonia emission from paddy rice field obtained by surface application of urea fertilizer with water management. The main objective of the present study were to assess the amount of NH3 emission and the loss of nitrogen from paddy field as affected by various N doses, i.e., 0 (control), 90 (N1), 180 (N2), 270 (N3) and 360 (N4) kg ha-1, following field surface application of urea fertilizer with water management. Ammonia emissions were measured by continuous airflow enclosure method from plots fertilized with the application of surface urea. Increase in urea-N dosage increased NH3 emission that was measured from paddy rice field. Ammonia emission started immediately and was almost complete within 12 days after top dressing of urea application to the soils. Ammonia emissions were nearly constant in all treatments from 12 days after fertilizer application. Highest ammonia emission rate was 28 g /day and total amount of ammonia emission was 56.21 kg ha-1 for 360 kg N ha-1 dose. No remarkable observation was found about temperature for ammonia emission. Due to proper water management practices less emission was observed throughout the experiment period. The results also show that N loss through NH3 emission accounted for 11 to 16% during the rice- growing season. These magnitudes of loss of N appear to be most important for environmental point of view.展开更多
Characteristics of electron emission induced by a surface flashover trigger device in a low-pressure trigger switch were investigated. A test method to measure the emitted charges from the trigger device was developed...Characteristics of electron emission induced by a surface flashover trigger device in a low-pressure trigger switch were investigated. A test method to measure the emitted charges from the trigger device was developed, and the factors affecting the emitted charges were analyzed. The results indicated that the major emitted charges from the trigger device were induced by surface plasma generated by surface flashover occurring on the trigger dielectric material. The emitted charges and the peak emission current increased linearly with the change in the trigger voltage and bias voltage. The emitted charges collected from the anode were affected by the gap distance. However, the emitted charges were less affected by the anode diameter. Furthermore, the emitted charges and the peak emission current decreased rapidly with the increase in gas pressure in a range from 0 Pa to 100 Pa, and then remained stable or changed slightly when the increase in gas pressure up to 2400 Pa.展开更多
AIM To evaluate usefulness of single photon emission computed tomography(SPECT) with three-dimensional stereotactic surface projection(3D-SSP) in distinguishing between Alzheimer's disease(AD) and depression.METHO...AIM To evaluate usefulness of single photon emission computed tomography(SPECT) with three-dimensional stereotactic surface projection(3D-SSP) in distinguishing between Alzheimer's disease(AD) and depression.METHODS We studied 43 patients who presented with both depressive symptoms and memory disturbance. Each subject was evaluated using the following:(1) the Minimal Mental State Examination;(2) the Hamilton Rating Scale for Depression;(3) Clinical Global Impression-Severity scale(CGI-S); and(4) SPECT imaging with 3D-SSP.RESULTS The MMSE scores correlated significantly with the maximum Z-scores of AD-associated regions. CGI-S scores correlated significantly with the maximum Z-scores of depression-associated regions. Factor analysis identified three significant factors. Of these, Factor 1 could be interpreted as favouring a tendency for AD, Factor 2 as favouring a tendency for pseudo-dementia, and Factor 3 as favouring a depressive tendency.CONCLUSION We investigated whether these patients could be categorized as types: Type A(true AD), Type B(pseudodementia), Type C(occult AD), and Type D(true depression). The factor scores in factor analysis supported the validity of this classification. Our results suggest that SPECT with 3D-SSP is highly useful for distinguishing between depression and depressed mood in the early stage of AD.展开更多
Enhancement of uorescent radiation is of great importance for applications including biological imaging,high-sensitivity detectors,and integrated light sources.Strong electromagnetic elds can be created around metalli...Enhancement of uorescent radiation is of great importance for applications including biological imaging,high-sensitivity detectors,and integrated light sources.Strong electromagnetic elds can be created around metallic nanoparticles or in gap of nanostructures,where the local state density of radiating mode is then dramatically enhanced.While enhanced uorescent emission has been demonstrated in many metallic nanoparticles and nanoparticle pairs,simultaneous mediation of absorption and emission processes of uorescent emitters remains challenging in metallic nanostructures.Here,we investigate uorescent emission mediated by metal-dielectric-metal fishnet metasurface,in which localized surface plasmon(LSP)and magnetic plasmon polaritons(MPPs)modes are coupled with absorption and emission processes,respectively.For absorption process,coupling of the LSP mode enables spatially-selective excitation of the uorescent emitters by rotating the polarization of the pump laser beam.In addition,the polarization-dependent MPP mode enables manipulation of both polarization and wavelength of the uorescent emission by introducing a rectangular fishnet structure.All the experimental observations are further corroborated by nite-difference time-domain simulations.The structure reported here has great potential for application to color light-emitting devices and nanoscale integrated light sources.展开更多
Optical emission spectroscopy (OES) was applied for plasma characterization during the erosion of asphaltene substrates. An amount of 100 mg of asphaltene was carefully applied to an electrode and exposed to air-pla...Optical emission spectroscopy (OES) was applied for plasma characterization during the erosion of asphaltene substrates. An amount of 100 mg of asphaltene was carefully applied to an electrode and exposed to air-plasma glow discharge at a pressure of 1.0 Torr. The plasma was generated in a stainless steel discharge chamber by an ac generator at a frequency of 60 Hz, output power of 50 W and a gas flow rate of 1.8 L/min. The electron temperature and ion density were estimated to be 2.15±0.11 eV and (1.24±0.05)× 10^16 m^-3, respectively, using a double Langmuir probe. OES was employed to observe the emission from the asphaltene exposed to air plasma. Both molecular band emission from N2, N2+, OH, CH, NH, O2 as well as CN, and atomic light emission from V and Hγ were observed and used to monitor the evolution of asphaltene erosion. The asphaltene erosion was analyzed with the aid of a scanning electron microscope (SEM) equipped with an energy dispersive X-ray (EDX) detector. The EDX analysis showed that the time evolution of elements C, O, S and V were similar and the chemical composition of the exposed asphaltenes remained constant. Particle size evolution was measured, showing a maximum size of 2307 μm after 60 min. This behavior is most likely related to particle agglomeration as a function of time.展开更多
Electron density (Ne) in a glow discharge plasma for the surface alloying technique is diagnosed by optical emission spectrometry (OES). With CH4 as the feeding gas, Ne is obtained by comparing the Hβ spectrum ac...Electron density (Ne) in a glow discharge plasma for the surface alloying technique is diagnosed by optical emission spectrometry (OES). With CH4 as the feeding gas, Ne is obtained by comparing the Hβ spectrum according to the Stark broadening effect. It is noticed that Ne varies with the working pressures (30 Pa to 70 Pa) and cathode voltages (500 V to 1000 V), respectively. Due to an abnormal glow discharge, Ne is between 1. 71 × 10^15 /cm^3 to 6.64 × 10^15 /cm^3 and increases rapidly with working gas pressures and cathode voltages. The results show that OES is a useful method to measure the plasma parameters in a surface alloying glow discharge plasma.展开更多
The emission and surface characteristics of a dispenser cathode coated with Re arestudied.It is found that the dispenser cathode coated with Re has both higher current densityand more uniform distribution of emission ...The emission and surface characteristics of a dispenser cathode coated with Re arestudied.It is found that the dispenser cathode coated with Re has both higher current densityand more uniform distribution of emission than the S-type cathode.The Auger images of Bashow that the Ba distribution on the surface of the cathode coated with Re is more uniform thanthat on the surface of the S-type cathode.The analytical results by XPS and low energy AESshow that the Ba on the surface of the cathode coated with Re has stronger metallic propertythan that on the surface of the S type cathode.展开更多
In this paper, volume barrier discharge with different gap distances is added on the discharge border of high-voltage electrode of annular surface barrier discharge for generating volume added surface barrier dischar...In this paper, volume barrier discharge with different gap distances is added on the discharge border of high-voltage electrode of annular surface barrier discharge for generating volume added surface barrier discharge (V-SBD) excited by bipolar nanosecond high-voltage pulse power in atmospheric air. The excited V-SBDs consist of surface barrier discharge (d = 0 mm) and volume added surface barrier discharges (d = 2 mm and 3 mm). The optical emission spectra are recorded for calculating emission intensities of N2 (C3 ∏u → B3∏g) and N2+ (B2 ∑u+ → X2 ∑g+), and simulating rotational and vibrational temperatures. The influences of gap distance of V-SBD on emission intensity and plasma temperature are also investigated and analyzed. The results show that d = 0 mm structure can excite the largest emission intensity of N2 (C3 ∏u → B3 ∏g), while the existence of volume barrier discharge can delay the occurrence of the peak value of the emission intensity ratio of N2 + (B2 ∑u+ → X2 ∑+g)/N2 (C3 ∏u → B3 ∏g) during the rising period of the applied voltage pulse and weaken it during the end period. The increasing factor of emission intensity is effected by the pulse repetition rate. The d = 3 mm structure has the highest threshold voltage while it can maintain more emission intensity of N2 (C3 ∏u→ B3∏g) than that of d = 2 mm structure. The structure of d = 2 mm can maintain more increasing factor than that of the d = 3 mm structure with varying pulse repetition rate. Besides, the rotational temperatures of three V-SBD structures are slightly affected when the gap distance and pulse repetition rate vary. The vibrational temperatures have decaying tendencies of all three structures with the increasing pulse repetition rate.展开更多
Environmental impact assessment (EIA) and environmental management plan (EMP) is a statutory requirement for execution of new mining projects or for expansion of the operating projects. For this purpose, quantificatio...Environmental impact assessment (EIA) and environmental management plan (EMP) is a statutory requirement for execution of new mining projects or for expansion of the operating projects. For this purpose, quantification of blasting dust emission is required. This can be done by developing emission factors for blasting. The concept is similar to that of specific charge in blasting. For mining operations other than blasting, quantification of dust can be done using emis- sion factors. Emission estimation techniques are very limited for blasting. In this study, the emission factors were de- veloped by carrying out a detailed field study at one of the largest opencast coal mines of India in all four seasons. Da- ta on atmospheric and meteorological conditions were generated by installing sodar and automatic weather station at the mine site. Respirable dust samplers were installed for monitoring of the dust emitted during coal or overburden bench blasting. Emission factors for dust concentrations were developed in gram per cubic meter of rock excavated. The developed emission factors were used to estimate dust emissions for adjacent mines due to similarity in mining and meteorological conditions. Seasonal variations in moisture contents in benches, where dust was monitored, indicated the lowest emission factors in monsoon due to high moisture in the bench materials. Similar field studies were also conducted at another coalfield of India for two seasons. It was found that the emission factors are site-specific.展开更多
We investigated the photon emission spectra on Ag(111)surface excited by tunneling electrons using a low temperature scanning tunneling microscope in ultrahigh vacuum.Characteristic plasmon modes were illustrated as a...We investigated the photon emission spectra on Ag(111)surface excited by tunneling electrons using a low temperature scanning tunneling microscope in ultrahigh vacuum.Characteristic plasmon modes were illustrated as a function of the bias voltage.The one electron excitation process was revealed by the linear relationship between the luminescence intensity and the tunneling current.Luminescence enhancement is observed in the tunneling regime for the relatively high bias voltages,as well as at the field emission resonance with bias voltage increased up to 9 V.Presence of a silver(Ag)nanoparticle in the tunneling junction results in an abnormally strong photon emission at the high field emission resonances,which is explained by the further enhancement due to coupling between the localized surface plasmon and the vacuum.The results are of potential value for applications where ultimate enhancement of photon emission is desired.展开更多
Surface coating facilities are major sources of volatile organic compounds (VOCs) in urban areas. These VOCs can contribute to ground-level ozone formation, and many are hazardous air pollutants (HAPs), including xyle...Surface coating facilities are major sources of volatile organic compounds (VOCs) in urban areas. These VOCs can contribute to ground-level ozone formation, and many are hazardous air pollutants (HAPs), including xylene, ethylbenzene, and toluene. This project was conducted in order to provide information for updating the Texas Commission on Environmental Quality (TCEQ), USA, permit by rule for Surface Coating Facilities. Project objectives were: 1) To develop a database of information regarding surface coating facilities in Texas;2) To estimate maximum emission rates for various VOC species from surface coating facilities in Texas;3) To conduct dispersion modeling to estimate off-site impacts from surface coating facilities. The database was developed using 286 TCEQ permit files authorizing surface coating facilities in Texas during 2006 and 2007. The database was designed to include information important for estimating emission rates, and for using as inputs to the dispersion model. Hourly and annual emissions of volatile organic compounds (VOCs), particulate matter (PM), and exempt solvents (ES) were calculated for each permitted entity/ company in the database, according to equations given by TCEQ. Dispersion modeling was then conducted for 3 facility configurations (worst-case stack height, good practice stack height, and fugitive emissions), for urban and rural dispersion parameters, for 8-hour and 24-hour operating scenarios, and for 1-hour, 24-hour, and annual averaging times, for a total of 36 scenarios. The highest modeled concentrations were for the worst-case stack height, rural dispersion parameters, 24-hour operation scenario, and 1-hour averaging time. 108 specific chemical species, which are components of surface coatings, were identified as candidates for further health impacts review.展开更多
The coaxial surface wave linear plasma with preeminent axial uniformity is developed with the 2.45 GHz microwave generator.By optical emission spectroscopy,parameters of the argon linear plasma with a length over 600 ...The coaxial surface wave linear plasma with preeminent axial uniformity is developed with the 2.45 GHz microwave generator.By optical emission spectroscopy,parameters of the argon linear plasma with a length over 600 mm are diagnosed under gas pressure of 30 and 50 Pa and different microwave powers.The spectral lines of argon and Hβ(486.1 nm)atoms in excited state are observed for estimating electron excitation temperature and electron density.Spectrum bands in305–310 nm of diatomic OH(Σ-Π+A X22 i)radicals are used to determine the molecule rotational temperature.Finally,the axial uniformity of electron density and electron excitation temperature are analyzed emphatically under various conditions.The results prove the distinct optimization of compensation from dual powers input,which can narrow the uniform coefficient of electron density and electron excitation temperature by around 40%and 22%respectively.With the microwave power increasing,the axial uniformity of both electron density and electron excitation temperature performs better.Nevertheless,the fluctuation of electron density along the axial direction appeared with higher gas pressure.The axial uniformity of coaxial surface wave linear plasma could be controlled by pressure and power for a better utilization in material processing.展开更多
The Au/Al2O3/Al metal/insulator/metal junction(MIMJ) and Au/SiO2/Si metal/insulator/Si junction(MISJ) have been constructed successfully. The light emission of these junctions was mediated by surface plasmon-polariton...The Au/Al2O3/Al metal/insulator/metal junction(MIMJ) and Au/SiO2/Si metal/insulator/Si junction(MISJ) have been constructed successfully. The light emission of these junctions was mediated by surface plasmon-polaritons(SPPs) under surface roughness. The light emission from MISJ was more uniform and stable than that from MIMJ. The light power of MISJ was about 2~3 orders higher than that of MIMJ. The light emission spectrum of MISJ was analyzed especially. In the spectrum, there was one main peak located at the wavelength of 610 nm^640 nm, which was mainly due to the couple of SPP with the surface roughness at the Au/air and Au/SiO2 interfaces. A weak peak located at the shorter wavelength region in the spectrum was also found, which was caused by the direct radiation of doped-Si plasma oscillation.展开更多
The surface flux emissions for volatile organic compounds (VOC’s) (alcohols and aromatic species), priority carbonyls and greenhouse gases, were measured in three different final disposal sites for urban solid waste ...The surface flux emissions for volatile organic compounds (VOC’s) (alcohols and aromatic species), priority carbonyls and greenhouse gases, were measured in three different final disposal sites for urban solid waste located in the metropolitan area of Costa Rica, between July and October 2014. The emissions fluxes were determined using the static sampling chamber technique coupled to two different adsorption tubes: active charcoal (Supelco, ORBO 32) to capture BTEX and alcohols;and 2,4-DNPH coated silica gel (SKC, 226-119) for carbonyls. As for the VOCs, the BTEX, Alcohols, and Carbonyls total fluxes were in the range of 3 to 258, 1 to 318 and 0.4 to 8.5 mg/(m2día), respectively. The magnitudes per site were in the following order La Carpio > El Huaso > Rio Azul. Ethanol and BTEX presented a high correlation in all the cases because possibly they are sharing the same sources or formation mechanisms. The emission fluxes spatial distributions among the sites were very variable and dependent on the location of the active cells and their age. Only La Carpio showed a more homogeneous distribution due to its middle age.展开更多
The aim of this research was to know the impact of planting leguminous cover crops (LCCs) of Mucuna bracteata and Calopogonium mucunoides in oil palm plantation on peatland on reducing CO2 emissions. Atmosphere temp...The aim of this research was to know the impact of planting leguminous cover crops (LCCs) of Mucuna bracteata and Calopogonium mucunoides in oil palm plantation on peatland on reducing CO2 emissions. Atmosphere temperature, peat surface temperature, in-closed chamber temperature and peat surface CO2 fluxes were monitored on two adjacent experimental plots. The first experimental plot was on the newly opened peat surface (NOPS) and another was on the eight years planted oil palm land (EPOL). The closed chamber techniques adopted from International Atomic Energy Agency (IAEA) (1993) were implemented to trap CO2 emissions emitted from 24 treatment plots at the 1st, 3rd and 6th months observations. Average CO2 fluxes observed on no LCCs plots in the NOPS site were 61.25 ± 8.98, 33.76 ± 2.92 and 33.75 ± 3.45 g/m2.h, while in the EPOL site were 55.38 ± 15.95, 29.90 ± 5.32 and 27.70 ± 4.62 g/mLh at the 1st, 3rd and 6th months monitoring, respectively. Average CO2 fluxes observed on the planted M. bracteata plots in the NOPS site were 68.2 ± 24.5, 12.88 ± 3.70 and 10.40 ± 1.28 g/m2.h, whereas in the EPOL site were 54.04 ± 6.70, 11.45 ± 2.00 and 9.33 ± 3.49 g/m2.h at the 1st, 3rd and 6th months monitoring, respectively. Average CO2 flux observed on the planted C. mucunoides plots in the NOPS site were 66.5 ± 23.7, 15.41 ± 1.51 and 9.74 ± 2.55 g/m2.h, while in the EPOL site were 47.00 ± 5.00, 9.34 ± 1.23 and 10.52 ± 4.80 g/m2.h at the 1st, 3rd and 6th months, respectively. P-value for the experimental sites was 0.008 (〈 0.05), indicating the significant difference in the level of CO2 fluxes between the sites. P-value for the treatments in the experimental plots was 0.000 (〈 0.05), indicating markedly different level of CO2 fluxes among treatments. P-value for the age ofM. bracteata and C. mucunoides planted on the experimental plots was 0.000 (〈 0.05), indicating the significant difference in the level of CO2 fluxes due to the enhanced LCCs age performing at the increase of shading effects. The comparison of CO2 fluxes among experimental plots shows that planting M. bracteata and C. mucunoides on the peatland could reduce CO2 emission.展开更多
Concrete pavement is accompanied by two major functional properties,namely noise emission and friction,which are closely related to pavement surface texture.While several technologies have been developed to mitigate t...Concrete pavement is accompanied by two major functional properties,namely noise emission and friction,which are closely related to pavement surface texture.While several technologies have been developed to mitigate tirepavement noise and improve driving friction by surface texturization,limited information is available to compare the advantages and disadvantages of different surface textures.In this study,a state-of-the-art and state-of-thepractice review is conducted to investigate the noise reduction and friction improvement technologies for concrete pavement surfaces.The commonly used tests for characterizing the surface texture,skid resistance,and noise emission of concrete pavement were first summarized.Then,the texturing methods for both fresh and hardened concrete pavement surfaces were discussed,and the friction,noise emission and durability performances of various surface textures were compared.It is found that the next generation concrete surface(NGCS)texture generally provides the best noise emission performance and excellent friction properties.The exposed aggregate concrete(EAC)and optimized diamond grinding textures are also promising alternatives.Lastly,the technical parameters for the application of both diamond grinding and diamond grinding&grooving textures were recommended based on the authors'research and practical experience in Germany and the US.This study offers a convenient reference to the pavement researchers and engineers who seek to quickly understand relevant knowledge and choose the most appropriate surface textures for concrete pavements.展开更多
基金supported by the National Key Research and Development Plan of China(No.2021YFE0114700)National Natural Science Foundation of China(No.52377145).
文摘Secondary electron emission(SEE)induced by the positive ion is an essential physical process to influence the dynamics of gas discharge which relies on the specific surface material.Surface charging has a significant impact on the material properties,thereby affecting the SEE in the plasma-surface interactions.However,it does not attract enough attention in the previous studies.In this paper,SEE dependent on the charged surface of specific materials is described with the computational method combining a density functional theory(DFT)model from the first-principle theory and the theory of Auger neutralization.The effect ofκ-Al2O3 surface charge,as an example,on the ion-induced secondary electron emission coefficient(SEEC)is investigated by analyzing the defect energy level and band structure on the charged surface.Simulation results indicate that,with the surface charge from negative to positive,the SEEC of a part of low ionization energy ions(such as Ei=12.6 eV)increases first and then decreases,exhibiting a nonlinear changing trend.This is quite different from the monotonic decreasing tendency observed in the previous model which simplifies the electronic structure.This irregular increase of the SEEC can be attributed to the lower escaped probability of orbital energy.The results further illustrate that the excessive charge could cause the bottom of the conduction band close to the valence band,thus leading to the decrease of the orbital energy occupied by the excited electrons.The nonlinear change of SEEC demonstrates a more realistic situation of how the electronic structure of material surface influences the SEE process.This work provides an accurate method of calculating SEEC from specific materials,which is urgent in widespread physical scenarios sensitive to surface materials,such as increasingly growing practical applications concerning plasma-surface interactions.
文摘The aim of this study is to evaluate the uncertainty of 2πα and 2πβ surface emission rates using the windowless multiwire proportional counter method.This study used the Monte Carlo method (MCM) to validate the conventional Guide to the Expression of Uncertainty in Measurement (GUM) method.A dead time measurement model for the two-source method was established based on the characteristics of a single-channel measurement system,and the voltage threshold correction factor measurement function was indirectly obtained by fitting the threshold correction curve.The uncertainty in the surface emission rate was calculated using the GUM method and the law of propagation of uncertainty.The MCM provided clear definitions for each input quantity and its uncertainty distribution,and the simulation training was realized with a complete and complex mathematical model.The results of the surface emission rate uncertainty evaluation for four radioactive plane sources using both methods showed the uncertainty’s consistency E_(n)<0.070 for the comparison of each source,and the uncertainty results of the GUM were all lower than those of the MCM.However,the MCM has a more objective evaluation process and can serve as a validation tool for GUM results.
文摘To enhance the accuracy of 2πα and 2πβ particle surface emission rate measurements and address the identification issues of nuclides in conventional methods, this study introduces two artificial neural network(ANN) algorithms: back-propagation(BP) and genetic algorithm-based back-propagation(GA-BP). These algorithms classify pulse signals from distinct α and β particles. Their discrimination efficacy is assessed by simulating standard pulse signals and those produced by contaminated sources, mixing α and β particles within the detector. This study initially showcases energy spectrum measurement outcomes, subsequently tests the ANNs on the measurement and validation datasets, and contrasts the pulse shape discrimination efficacy of both algorithms. Experimental findings reveal that the proportional counter's energy resolution is not ideal, thus rendering energy analysis insufficient for distinguishing between 2πα and 2πβ particles. The BP neural network realizes approximately 99% accuracy for 2πα particles and approximately 95% for 2πβ particles, thus surpassing the GA-BP's performance. Additionally, the results suggest enhancing β particle discrimination accuracy by increasing the digital acquisition card's threshold lower limit. This study offers an advanced solution for the 2πα and 2πβ surface emission rate measurement method, presenting superior adaptability and scalability over conventional techniques.
文摘Information is given on thermal radiation from the Sun, considered in practical engineering calculations of heat exchange. It was found that although the surface temperature of the Sun is assumed to be about 5800 K, the solar spectrum data measured by Kondratyev lead to a value of at least 7134 K. Such a higher value can be obtained by interpreting the Planck formula for the black radiation spectrum for the Kondratyev data. In addition, using the Stefan-Boltzmann law, the energetic emissivity of the Sun’s surface was determined to be 0.431. Furthermore, based on Petela’s formulae for exergy of thermal radiation, the exergetic emissivity of the Sun’s surface was also calculated at the level of 0.426.
基金the author is wishing to express his gratitude to the National Natural Science Foundation of China(2002CB410807)for subsiding this research.
文摘Ammonia emission is one of the most important pathways of nitrogen loss from agricultural cultivated field. In this paper, we report the measurement of ammonia emission from paddy rice field obtained by surface application of urea fertilizer with water management. The main objective of the present study were to assess the amount of NH3 emission and the loss of nitrogen from paddy field as affected by various N doses, i.e., 0 (control), 90 (N1), 180 (N2), 270 (N3) and 360 (N4) kg ha-1, following field surface application of urea fertilizer with water management. Ammonia emissions were measured by continuous airflow enclosure method from plots fertilized with the application of surface urea. Increase in urea-N dosage increased NH3 emission that was measured from paddy rice field. Ammonia emission started immediately and was almost complete within 12 days after top dressing of urea application to the soils. Ammonia emissions were nearly constant in all treatments from 12 days after fertilizer application. Highest ammonia emission rate was 28 g /day and total amount of ammonia emission was 56.21 kg ha-1 for 360 kg N ha-1 dose. No remarkable observation was found about temperature for ammonia emission. Due to proper water management practices less emission was observed throughout the experiment period. The results also show that N loss through NH3 emission accounted for 11 to 16% during the rice- growing season. These magnitudes of loss of N appear to be most important for environmental point of view.
基金supported by the New Century Talent Foundation of Ministry of Education of China (NCET-08-0438)
文摘Characteristics of electron emission induced by a surface flashover trigger device in a low-pressure trigger switch were investigated. A test method to measure the emitted charges from the trigger device was developed, and the factors affecting the emitted charges were analyzed. The results indicated that the major emitted charges from the trigger device were induced by surface plasma generated by surface flashover occurring on the trigger dielectric material. The emitted charges and the peak emission current increased linearly with the change in the trigger voltage and bias voltage. The emitted charges collected from the anode were affected by the gap distance. However, the emitted charges were less affected by the anode diameter. Furthermore, the emitted charges and the peak emission current decreased rapidly with the increase in gas pressure in a range from 0 Pa to 100 Pa, and then remained stable or changed slightly when the increase in gas pressure up to 2400 Pa.
文摘AIM To evaluate usefulness of single photon emission computed tomography(SPECT) with three-dimensional stereotactic surface projection(3D-SSP) in distinguishing between Alzheimer's disease(AD) and depression.METHODS We studied 43 patients who presented with both depressive symptoms and memory disturbance. Each subject was evaluated using the following:(1) the Minimal Mental State Examination;(2) the Hamilton Rating Scale for Depression;(3) Clinical Global Impression-Severity scale(CGI-S); and(4) SPECT imaging with 3D-SSP.RESULTS The MMSE scores correlated significantly with the maximum Z-scores of AD-associated regions. CGI-S scores correlated significantly with the maximum Z-scores of depression-associated regions. Factor analysis identified three significant factors. Of these, Factor 1 could be interpreted as favouring a tendency for AD, Factor 2 as favouring a tendency for pseudo-dementia, and Factor 3 as favouring a depressive tendency.CONCLUSION We investigated whether these patients could be categorized as types: Type A(true AD), Type B(pseudodementia), Type C(occult AD), and Type D(true depression). The factor scores in factor analysis supported the validity of this classification. Our results suggest that SPECT with 3D-SSP is highly useful for distinguishing between depression and depressed mood in the early stage of AD.
基金supported by the National Nature Science Foundation of China(No.11674303 and No.11574293)the USTC Center for Micro and Nanoscale Research and Fabrication
文摘Enhancement of uorescent radiation is of great importance for applications including biological imaging,high-sensitivity detectors,and integrated light sources.Strong electromagnetic elds can be created around metallic nanoparticles or in gap of nanostructures,where the local state density of radiating mode is then dramatically enhanced.While enhanced uorescent emission has been demonstrated in many metallic nanoparticles and nanoparticle pairs,simultaneous mediation of absorption and emission processes of uorescent emitters remains challenging in metallic nanostructures.Here,we investigate uorescent emission mediated by metal-dielectric-metal fishnet metasurface,in which localized surface plasmon(LSP)and magnetic plasmon polaritons(MPPs)modes are coupled with absorption and emission processes,respectively.For absorption process,coupling of the LSP mode enables spatially-selective excitation of the uorescent emitters by rotating the polarization of the pump laser beam.In addition,the polarization-dependent MPP mode enables manipulation of both polarization and wavelength of the uorescent emission by introducing a rectangular fishnet structure.All the experimental observations are further corroborated by nite-difference time-domain simulations.The structure reported here has great potential for application to color light-emitting devices and nanoscale integrated light sources.
基金supported partially by DGAPA IN-105010, CONACyT 128714 of Mexico
文摘Optical emission spectroscopy (OES) was applied for plasma characterization during the erosion of asphaltene substrates. An amount of 100 mg of asphaltene was carefully applied to an electrode and exposed to air-plasma glow discharge at a pressure of 1.0 Torr. The plasma was generated in a stainless steel discharge chamber by an ac generator at a frequency of 60 Hz, output power of 50 W and a gas flow rate of 1.8 L/min. The electron temperature and ion density were estimated to be 2.15±0.11 eV and (1.24±0.05)× 10^16 m^-3, respectively, using a double Langmuir probe. OES was employed to observe the emission from the asphaltene exposed to air plasma. Both molecular band emission from N2, N2+, OH, CH, NH, O2 as well as CN, and atomic light emission from V and Hγ were observed and used to monitor the evolution of asphaltene erosion. The asphaltene erosion was analyzed with the aid of a scanning electron microscope (SEM) equipped with an energy dispersive X-ray (EDX) detector. The EDX analysis showed that the time evolution of elements C, O, S and V were similar and the chemical composition of the exposed asphaltenes remained constant. Particle size evolution was measured, showing a maximum size of 2307 μm after 60 min. This behavior is most likely related to particle agglomeration as a function of time.
基金supported by National Steel Union Foundation of China (No.50374050)
文摘Electron density (Ne) in a glow discharge plasma for the surface alloying technique is diagnosed by optical emission spectrometry (OES). With CH4 as the feeding gas, Ne is obtained by comparing the Hβ spectrum according to the Stark broadening effect. It is noticed that Ne varies with the working pressures (30 Pa to 70 Pa) and cathode voltages (500 V to 1000 V), respectively. Due to an abnormal glow discharge, Ne is between 1. 71 × 10^15 /cm^3 to 6.64 × 10^15 /cm^3 and increases rapidly with working gas pressures and cathode voltages. The results show that OES is a useful method to measure the plasma parameters in a surface alloying glow discharge plasma.
文摘The emission and surface characteristics of a dispenser cathode coated with Re arestudied.It is found that the dispenser cathode coated with Re has both higher current densityand more uniform distribution of emission than the S-type cathode.The Auger images of Bashow that the Ba distribution on the surface of the cathode coated with Re is more uniform thanthat on the surface of the S-type cathode.The analytical results by XPS and low energy AESshow that the Ba on the surface of the cathode coated with Re has stronger metallic propertythan that on the surface of the S type cathode.
基金supported by National Key R&D Program of China (2016YFC0207200)National Natural Science Foundation of China (Nos. 51377014, 51407022 and 51677019)
文摘In this paper, volume barrier discharge with different gap distances is added on the discharge border of high-voltage electrode of annular surface barrier discharge for generating volume added surface barrier discharge (V-SBD) excited by bipolar nanosecond high-voltage pulse power in atmospheric air. The excited V-SBDs consist of surface barrier discharge (d = 0 mm) and volume added surface barrier discharges (d = 2 mm and 3 mm). The optical emission spectra are recorded for calculating emission intensities of N2 (C3 ∏u → B3∏g) and N2+ (B2 ∑u+ → X2 ∑g+), and simulating rotational and vibrational temperatures. The influences of gap distance of V-SBD on emission intensity and plasma temperature are also investigated and analyzed. The results show that d = 0 mm structure can excite the largest emission intensity of N2 (C3 ∏u → B3 ∏g), while the existence of volume barrier discharge can delay the occurrence of the peak value of the emission intensity ratio of N2 + (B2 ∑u+ → X2 ∑+g)/N2 (C3 ∏u → B3 ∏g) during the rising period of the applied voltage pulse and weaken it during the end period. The increasing factor of emission intensity is effected by the pulse repetition rate. The d = 3 mm structure has the highest threshold voltage while it can maintain more emission intensity of N2 (C3 ∏u→ B3∏g) than that of d = 2 mm structure. The structure of d = 2 mm can maintain more increasing factor than that of the d = 3 mm structure with varying pulse repetition rate. Besides, the rotational temperatures of three V-SBD structures are slightly affected when the gap distance and pulse repetition rate vary. The vibrational temperatures have decaying tendencies of all three structures with the increasing pulse repetition rate.
文摘Environmental impact assessment (EIA) and environmental management plan (EMP) is a statutory requirement for execution of new mining projects or for expansion of the operating projects. For this purpose, quantification of blasting dust emission is required. This can be done by developing emission factors for blasting. The concept is similar to that of specific charge in blasting. For mining operations other than blasting, quantification of dust can be done using emis- sion factors. Emission estimation techniques are very limited for blasting. In this study, the emission factors were de- veloped by carrying out a detailed field study at one of the largest opencast coal mines of India in all four seasons. Da- ta on atmospheric and meteorological conditions were generated by installing sodar and automatic weather station at the mine site. Respirable dust samplers were installed for monitoring of the dust emitted during coal or overburden bench blasting. Emission factors for dust concentrations were developed in gram per cubic meter of rock excavated. The developed emission factors were used to estimate dust emissions for adjacent mines due to similarity in mining and meteorological conditions. Seasonal variations in moisture contents in benches, where dust was monitored, indicated the lowest emission factors in monsoon due to high moisture in the bench materials. Similar field studies were also conducted at another coalfield of India for two seasons. It was found that the emission factors are site-specific.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21961142021,11774395,and 11727902)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB30201000)the Beijing Natural Science Foundation,China(Grant No.4181003)。
文摘We investigated the photon emission spectra on Ag(111)surface excited by tunneling electrons using a low temperature scanning tunneling microscope in ultrahigh vacuum.Characteristic plasmon modes were illustrated as a function of the bias voltage.The one electron excitation process was revealed by the linear relationship between the luminescence intensity and the tunneling current.Luminescence enhancement is observed in the tunneling regime for the relatively high bias voltages,as well as at the field emission resonance with bias voltage increased up to 9 V.Presence of a silver(Ag)nanoparticle in the tunneling junction results in an abnormally strong photon emission at the high field emission resonances,which is explained by the further enhancement due to coupling between the localized surface plasmon and the vacuum.The results are of potential value for applications where ultimate enhancement of photon emission is desired.
文摘Surface coating facilities are major sources of volatile organic compounds (VOCs) in urban areas. These VOCs can contribute to ground-level ozone formation, and many are hazardous air pollutants (HAPs), including xylene, ethylbenzene, and toluene. This project was conducted in order to provide information for updating the Texas Commission on Environmental Quality (TCEQ), USA, permit by rule for Surface Coating Facilities. Project objectives were: 1) To develop a database of information regarding surface coating facilities in Texas;2) To estimate maximum emission rates for various VOC species from surface coating facilities in Texas;3) To conduct dispersion modeling to estimate off-site impacts from surface coating facilities. The database was developed using 286 TCEQ permit files authorizing surface coating facilities in Texas during 2006 and 2007. The database was designed to include information important for estimating emission rates, and for using as inputs to the dispersion model. Hourly and annual emissions of volatile organic compounds (VOCs), particulate matter (PM), and exempt solvents (ES) were calculated for each permitted entity/ company in the database, according to equations given by TCEQ. Dispersion modeling was then conducted for 3 facility configurations (worst-case stack height, good practice stack height, and fugitive emissions), for urban and rural dispersion parameters, for 8-hour and 24-hour operating scenarios, and for 1-hour, 24-hour, and annual averaging times, for a total of 36 scenarios. The highest modeled concentrations were for the worst-case stack height, rural dispersion parameters, 24-hour operation scenario, and 1-hour averaging time. 108 specific chemical species, which are components of surface coatings, were identified as candidates for further health impacts review.
基金supported by National Natural Science Foundation of China(Nos.11575252 and 11775270)Institute of Energy of Hefei Comprehensive National Science Center,People’s Republic of China(Nos.19KZS206,21KZS201)。
文摘The coaxial surface wave linear plasma with preeminent axial uniformity is developed with the 2.45 GHz microwave generator.By optical emission spectroscopy,parameters of the argon linear plasma with a length over 600 mm are diagnosed under gas pressure of 30 and 50 Pa and different microwave powers.The spectral lines of argon and Hβ(486.1 nm)atoms in excited state are observed for estimating electron excitation temperature and electron density.Spectrum bands in305–310 nm of diatomic OH(Σ-Π+A X22 i)radicals are used to determine the molecule rotational temperature.Finally,the axial uniformity of electron density and electron excitation temperature are analyzed emphatically under various conditions.The results prove the distinct optimization of compensation from dual powers input,which can narrow the uniform coefficient of electron density and electron excitation temperature by around 40%and 22%respectively.With the microwave power increasing,the axial uniformity of both electron density and electron excitation temperature performs better.Nevertheless,the fluctuation of electron density along the axial direction appeared with higher gas pressure.The axial uniformity of coaxial surface wave linear plasma could be controlled by pressure and power for a better utilization in material processing.
基金National Natural Science Foundation of China(69576006)
文摘The Au/Al2O3/Al metal/insulator/metal junction(MIMJ) and Au/SiO2/Si metal/insulator/Si junction(MISJ) have been constructed successfully. The light emission of these junctions was mediated by surface plasmon-polaritons(SPPs) under surface roughness. The light emission from MISJ was more uniform and stable than that from MIMJ. The light power of MISJ was about 2~3 orders higher than that of MIMJ. The light emission spectrum of MISJ was analyzed especially. In the spectrum, there was one main peak located at the wavelength of 610 nm^640 nm, which was mainly due to the couple of SPP with the surface roughness at the Au/air and Au/SiO2 interfaces. A weak peak located at the shorter wavelength region in the spectrum was also found, which was caused by the direct radiation of doped-Si plasma oscillation.
文摘The surface flux emissions for volatile organic compounds (VOC’s) (alcohols and aromatic species), priority carbonyls and greenhouse gases, were measured in three different final disposal sites for urban solid waste located in the metropolitan area of Costa Rica, between July and October 2014. The emissions fluxes were determined using the static sampling chamber technique coupled to two different adsorption tubes: active charcoal (Supelco, ORBO 32) to capture BTEX and alcohols;and 2,4-DNPH coated silica gel (SKC, 226-119) for carbonyls. As for the VOCs, the BTEX, Alcohols, and Carbonyls total fluxes were in the range of 3 to 258, 1 to 318 and 0.4 to 8.5 mg/(m2día), respectively. The magnitudes per site were in the following order La Carpio > El Huaso > Rio Azul. Ethanol and BTEX presented a high correlation in all the cases because possibly they are sharing the same sources or formation mechanisms. The emission fluxes spatial distributions among the sites were very variable and dependent on the location of the active cells and their age. Only La Carpio showed a more homogeneous distribution due to its middle age.
文摘The aim of this research was to know the impact of planting leguminous cover crops (LCCs) of Mucuna bracteata and Calopogonium mucunoides in oil palm plantation on peatland on reducing CO2 emissions. Atmosphere temperature, peat surface temperature, in-closed chamber temperature and peat surface CO2 fluxes were monitored on two adjacent experimental plots. The first experimental plot was on the newly opened peat surface (NOPS) and another was on the eight years planted oil palm land (EPOL). The closed chamber techniques adopted from International Atomic Energy Agency (IAEA) (1993) were implemented to trap CO2 emissions emitted from 24 treatment plots at the 1st, 3rd and 6th months observations. Average CO2 fluxes observed on no LCCs plots in the NOPS site were 61.25 ± 8.98, 33.76 ± 2.92 and 33.75 ± 3.45 g/m2.h, while in the EPOL site were 55.38 ± 15.95, 29.90 ± 5.32 and 27.70 ± 4.62 g/mLh at the 1st, 3rd and 6th months monitoring, respectively. Average CO2 fluxes observed on the planted M. bracteata plots in the NOPS site were 68.2 ± 24.5, 12.88 ± 3.70 and 10.40 ± 1.28 g/m2.h, whereas in the EPOL site were 54.04 ± 6.70, 11.45 ± 2.00 and 9.33 ± 3.49 g/m2.h at the 1st, 3rd and 6th months monitoring, respectively. Average CO2 flux observed on the planted C. mucunoides plots in the NOPS site were 66.5 ± 23.7, 15.41 ± 1.51 and 9.74 ± 2.55 g/m2.h, while in the EPOL site were 47.00 ± 5.00, 9.34 ± 1.23 and 10.52 ± 4.80 g/m2.h at the 1st, 3rd and 6th months, respectively. P-value for the experimental sites was 0.008 (〈 0.05), indicating the significant difference in the level of CO2 fluxes between the sites. P-value for the treatments in the experimental plots was 0.000 (〈 0.05), indicating markedly different level of CO2 fluxes among treatments. P-value for the age ofM. bracteata and C. mucunoides planted on the experimental plots was 0.000 (〈 0.05), indicating the significant difference in the level of CO2 fluxes due to the enhanced LCCs age performing at the increase of shading effects. The comparison of CO2 fluxes among experimental plots shows that planting M. bracteata and C. mucunoides on the peatland could reduce CO2 emission.
基金The authors gratefully acknowledge the financial support of the National Key Research and Development Program of China(2019YFE0116300)the National Natural Science Foundation of China(52308448,52250610218)the Natural Science Foundation of Heilongjiang Province of China(JJ2020ZD0015).
文摘Concrete pavement is accompanied by two major functional properties,namely noise emission and friction,which are closely related to pavement surface texture.While several technologies have been developed to mitigate tirepavement noise and improve driving friction by surface texturization,limited information is available to compare the advantages and disadvantages of different surface textures.In this study,a state-of-the-art and state-of-thepractice review is conducted to investigate the noise reduction and friction improvement technologies for concrete pavement surfaces.The commonly used tests for characterizing the surface texture,skid resistance,and noise emission of concrete pavement were first summarized.Then,the texturing methods for both fresh and hardened concrete pavement surfaces were discussed,and the friction,noise emission and durability performances of various surface textures were compared.It is found that the next generation concrete surface(NGCS)texture generally provides the best noise emission performance and excellent friction properties.The exposed aggregate concrete(EAC)and optimized diamond grinding textures are also promising alternatives.Lastly,the technical parameters for the application of both diamond grinding and diamond grinding&grooving textures were recommended based on the authors'research and practical experience in Germany and the US.This study offers a convenient reference to the pavement researchers and engineers who seek to quickly understand relevant knowledge and choose the most appropriate surface textures for concrete pavements.