期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effect of Surface Polishing Treatment on the Fatigue Performance of Shot-Peened Ti–6Al–4V Alloy 被引量:1
1
作者 Z.G.Liu T.I.Wong +2 位作者 W.Huang N.Sridhar S.J.Wang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2017年第7期630-640,共11页
In this study, shot peening is applied to the titanium alloy Ti–6Al–4V, and the surface treatment effect on fatigue life of shot-peened specimens under high cycle loading is investigated. The induced residual stress... In this study, shot peening is applied to the titanium alloy Ti–6Al–4V, and the surface treatment effect on fatigue life of shot-peened specimens under high cycle loading is investigated. The induced residual stress is measured by using the orbital hole-drilling method. Surface profilometer and optical microscopy are employed to characterize the surface roughness and morphology. The deformed microstructure layers of the shot-peened specimens are investigated by using scanning electron microscopy. Experiments reveal that the fatigue life of Ti–6Al–4V is improved by the shot peening process, and the surface pre-peening polishing. The combination of pre-and post-peening polishing treatments further improves fatigue life of Ti–6Al–4V specimens. The present work provides useful guidelines for developing more efficient shot peening strategies. 展开更多
关键词 Shot peening surface polishing treatment Fatigue Residual stress Ti–6Al–4V alloy
原文传递
Material Removal Model Considering Influence of Curvature Radius in Bonnet Polishing Convex Surface 被引量:3
2
作者 SONG Jianfeng YAO Yingxue 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第6期1109-1116,共8页
The bonnet tool polishing is a novel, advanced and ultra-precise polishing process, by which the freeform surface can be polished. However, during the past few years, not only the key technology of calculating the dwe... The bonnet tool polishing is a novel, advanced and ultra-precise polishing process, by which the freeform surface can be polished. However, during the past few years, not only the key technology of calculating the dwell time and controlling the surface form in the bonnet polishing has been little reported so far, but also little attention has been paid to research the material removal function of the convex surface based on the geometry model considering the influence of the curvature radius. Firstly in this paper, for realizing the control of the freeform surface automatically by the bonnet polishing, on the basis of the simplified geometric model of convex surface, the calculation expression of the polishing contact spot on the convex surface considering the influence of the curvature radius is deduced, and the calculation model of the pressure distribution considering the influence of the curvature radius on the convex surface is derived by the coordinate transformation. Then the velocity distribution model is built in the bonnet polishing the convex surface. On the basis of the above research and the semi-experimental modified Preston equation obtained from the combination method of experimental and theoretical derivation, the material removal model of the convex surface considering the influence of the curvature radius in the bonnet polishing is established. Finally, the validity of the model through the simulation method has been validated. This research presents an effective prediction model and the calculation method of material removal for convex surface in bonnet polishing and prepares for the bonnet polishing the free surface numerically and automatically. 展开更多
关键词 bonnet polishing convex surface material removal model curvature radius
下载PDF
Experimental Study on High Electrical Breakdown of Water Dielectric 被引量:1
3
作者 张自成 张建德 杨建华 《Plasma Science and Technology》 SCIE EI CAS CSCD 2005年第6期3161-3165,共5页
By means of a coaxial apparatus, microsecond charging have been carried out with ferent ethylene glycol concentrations of ethylene pressurized water breakdown experiments with different surface roughness of electrodes... By means of a coaxial apparatus, microsecond charging have been carried out with ferent ethylene glycol concentrations of ethylene pressurized water breakdown experiments with different surface roughness of electrodes and difglycol/water mixture. The experimental results about the breakdown stress and the effective time are presented. The breakdown stress is normalized to the situation that the effective time is transformed to 1 μs and analyzed. The conclusions are as follows: (1) the breakdown stress formula is modified to E = 0.561MA^-1/10teff^-1/^NP^1/8 ;(2) the coefficient M is significantly increased by surface polishing and ethylene glycol additive; (3) it is accumulative for the capacity of improving electrical breakdown strength for surface polishing, ethylene glycol additive, and pressurization, of which pressurization is the most effective method; (4) the highest stress of 235.5 kV/cm is observed in ethylene glycol/water mixture with an ethylene glycol concentration of 80% at a hydrostatic pressure of 1215.9 kPa and is about one time greater than that in pure water at constant pressure; (5) for pressurization and surface polishing, the primary mechanism to improve the breakdown strength of water dielectric is the increase in the breakdown time delay. Research results indicate great potential in the application of the high power pulse conditioning system of water dielectric. 展开更多
关键词 high electrical breakdown pressurized water dielectric polished surface of electrodes ethylene glycol additive microsecond charging
下载PDF
Next generation barrier CMP slurry with novel weakly alkaline chelating agent 被引量:1
4
作者 樊世燕 刘玉岭 +4 位作者 孙鸣 唐继英 闫辰奇 李海龙 王胜利 《Journal of Semiconductors》 EI CAS CSCD 2015年第1期168-172,共5页
To strengthen the device performance with the pattern wafer by enhancing the Cu polishing rate and improve the surface roughness with the Cu lines, a new weakly alkaline chelating agent with a barrier slurry is develo... To strengthen the device performance with the pattern wafer by enhancing the Cu polishing rate and improve the surface roughness with the Cu lines, a new weakly alkaline chelating agent with a barrier slurry is developed to meet the process demand of the advanced barrier chemical mechanical planarization(CMP). This new chelating agent has a stronger chelating ability and a lower p H value than the previous generation-FA/O I chelating agent researched before. Without an unstable oxidant agent added in the polishing slurry, it is difficult to enhance the copper polishing rate during the barrier CMP. The stronger chelating ability of the new chelating agent could increase the copper polishing rate along with controlling the Cu/Ta/TEOS removal rate selectivity to meet the requirements of the IC fabrication process. Thus it has solved the problem of excessive roughness due to the lower polishing rate, avoiding reducing the device performance with the pattern wafer. The new chelating agent with its lower p H value could make it possible to protect the low-k dielectric under the barrier layer from structurally breaking. The CMP experiment was performed on the 12 inch MIT 854 pattern wafers with the barrier slurry containing the new weakly alkaline chelating agent. By the DOE optimization, the results indicate that as the new chelating agent concentration in the slurry was up to 2.5 m L/L, the copper polishing rate is about 31.082 nm/min.Meanwhile, the wafer surface has a rather low roughness value of 0.693 nm(10×10 μm), the correction ability with the above slurry is adapted to the next generation barrier CMP and the k value of the low-k dielectric seems to have no k-shift. All the results presented show that the new weakly alkaline chelating agent with its superior performance can be used for the advanced barrier CMP. 展开更多
关键词 barrier CMP chelating agent polishing rate surface roughness
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部