期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
AC Back Surface Recombination Velocity in n<sup>+</sup>-p-p<sup>+</sup>Silicon Solar Cell under Monochromatic Light and Temperature 被引量:1
1
作者 Mame Faty Mbaye Fall Idrissa Gaye +6 位作者 Dianguina Diarisso Gora Diop Khady Loum Nafy Diop Khalidou Mamadou Sy Mor Ndiaye Gregoire Sissoko 《Journal of Electromagnetic Analysis and Applications》 2021年第5期67-81,共15页
Excess minority carrier’s diffusion equation in the base of monofaciale silicon solar cell under frequency modulation of monochromatic illumination is resolved. Using conditions at the base limits involving recombina... Excess minority carrier’s diffusion equation in the base of monofaciale silicon solar cell under frequency modulation of monochromatic illumination is resolved. Using conditions at the base limits involving recombination velocities <i>Sf</i> and <i>Sb</i>, respectively at the junction (n<sup>+</sup>/p) and back surface (p<sup>+</sup>/p), the AC expression of the excess minority carriers’ density <i>δ</i> (<i>T</i>, <i>ω</i>) is determined. The AC density of photocurrent <i>J<sub>ph</sub></i> (<i>T</i>, <i>ω</i>) is represented versus recombination velocity at the junction for different values of the temperature. The expression of the AC back surface recombination velocity <i>Sb</i> of minority carriers is deduced depending on the frequency of modulation, temperature, the electronic parameters (<i>D</i> (<i>ω</i>)) and the thickness of the base. Bode and Nyquist diagrams are used to analyze it. 展开更多
关键词 Silicon Solar Cell AC Back surface recombination velocity Temperature Bode and Nyquist Diagrams
下载PDF
n<sup>+</sup>-p-p<sup>+</sup>Silicon Solar Cell Base Optimum Thickness Determination under Magnetic Field 被引量:1
2
作者 Cheikh Thiaw Mamadou Lamine Ba +4 位作者 Mamour Amadou Ba Gora Diop Ibrahima Diatta Mor Ndiaye Gregoire Sissoko 《Journal of Electromagnetic Analysis and Applications》 2020年第7期103-113,共11页
Base optimum thickness is determined for a front illuminated bifacial silicon solar cell n<sup>+</sup>-p<span style="font-size:10px;">-</span>p<sup>+</sup> under magnetic ... Base optimum thickness is determined for a front illuminated bifacial silicon solar cell n<sup>+</sup>-p<span style="font-size:10px;">-</span>p<sup>+</sup> under magnetic field. From the magneto transport equation relative to excess minority carriers in the base, with specific boundary conditions, the photocurrent is obtained. From this result the expressions of the carrier’s recombination velocity at the back surface are deducted. These new expressions of recombination velocity are plotted according to the depth of the base, to deduce the optimum thickness, which will allow the production, of a high short-circuit photocurrent. Calibration relationships of optimum thickness versus magnetic field were presented according to study ranges. It is found that, applied magnetic field imposes a weak thickness material for solar cell manufacturing leading to high short-circuit current. 展开更多
关键词 Silicon Solar Cell MAGNETOTRANSPORT surface recombination velocity Base Thickness
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部