期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Surface rupture zone of the 1303 Hongtong M=8 earthquake, Shanxi Province 被引量:4
1
作者 JIANG Wa-li(江娃利) +5 位作者 DENG Qi-dong(邓起东) XU Xi-wei(徐锡伟) XIE Xin-sheng(谢新生) 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第4期389-397,共9页
Based on the latest displacement of Huoshan piedmont fault, Mianshan west-side fault and Taigu fault obtained from the beginning of 1990s up to the present, the characteristics of distribution and displacement of surf... Based on the latest displacement of Huoshan piedmont fault, Mianshan west-side fault and Taigu fault obtained from the beginning of 1990s up to the present, the characteristics of distribution and displacement of surface rup-ture zone of the 1303 Hongtong M = 8 earthquake, Shanxi Province are synthesized and discussed in the paper. If Taigu fault, Mianshan west-side fault and Huoshan piedmont fault were contemporarily active during the 1303 Hongtong M = 8 earthquake, the surface rupture zone would be 160 km long and could be divided into 3 segments, that is, the 50-km-long Huoshan piedmont fault segment, 35-km-long Mianshan west-side fault segment and 70-km-long Taigu fault segment, respectively. Among them, there exist 4 km and 8 km step regions. The surface rupture zone exhibits right-lateral features. The displacements of northern and central segments are respectively 6~7 m and the southern segment has the maximum displacement of 10 m. The single basin-boundary fault of Shanxi fault-depression system usually corresponds to M 7 earthquake, while this great earthquake (M = 8) broke through the obstacle between two basins. It shows that the surface rupture scale of great earthquake is changeable. 展开更多
关键词 M = 8 earthquake surface rupture zone changeability of rupture scale
下载PDF
The Surface Rupture Zone and Coseismic Deformation Produced by the Yutian Ms7.3 Earthquake of 21 March 2008,Xinjiang 被引量:2
2
作者 SHAN Xinjian QU Chunyan +5 位作者 WANG Chisheng ZHANG Guifang ZHANG Guohong SONG Xiaogang GUO Liming LIU Yunhua 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第1期256-265,共10页
On 21 March 2008, a Ms7.3 earthquake occurred at Quickbird, Yutian County, Xinjiang. We attempt to reveal the features of the causative fault of this shock and its coseismic deformation field. Our work is based on ana... On 21 March 2008, a Ms7.3 earthquake occurred at Quickbird, Yutian County, Xinjiang. We attempt to reveal the features of the causative fault of this shock and its coseismic deformation field. Our work is based on analysis and interpretation to high-resolution satellite images as well as differential interferometric synthetic aperture radar (D-InSAR) data from the satellite Envisat SAR, coupled with seismicity, focal mechanism solutions and active tectonics in this region. The result shows that the 40 km-long, nearly NS trending surface rupture zone by this event lies on a range-front alluvial platform in Qira County. It is characterized by distinct linear traces and simple structure with 1-3-m-wide individual seams and maximum 6.5 m width of a collapse fracture. Along the rupture zone many secondary fractures and fault-bounded blocks are seen, exhibiting remarkable extension. The eoseismic deformation affected a large area 100~100 km2. D-InSAR analysis indicates that the interferometric deformation field is dominated by extensional faulting with a small strike-slip component. Along the causative fault, the western wall fell down and the eastern wall, that is the active unit, rose up, both with westerly vergence. Because of the big deformation gradients near the seismogenic fault, no interference fringes are seen on images, and what can be determined is a vertical displacement 70 cm or more between the two fault walls. According to the epicenter and differential occurrence times from the National Earthquake Information Center, China Earthquake Network Center, Harvard and USGS, it is suggested that the seismic fault ruptured from north to south. 展开更多
关键词 Yuntian Earthquake high resolution image D-INSAR surface rupture zone coseismic deformation field
下载PDF
Application of High-Resolution Remote Sensing Technology in Quantitative Study on Coseismic Surface Rupture Zones: An Example of the 2008 M_w7.2 Yutian Earthquake
3
作者 SHAN Xinjian HAN Nana +3 位作者 SONG Xiaogang GONG Wenyu QU Chunyan ZHANG Yingfeng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2018年第6期2468-2469,共2页
Objective Nowadays, high-resolution remote sensing technology has brought new changes to surveys of earthquakes, and the quantitative study of seismic faults based on this technology has become a trend in the world(Ba... Objective Nowadays, high-resolution remote sensing technology has brought new changes to surveys of earthquakes, and the quantitative study of seismic faults based on this technology has become a trend in the world(Barzegari et al., 2017). An Mw 7.2 earthquake occurred in Yutian of Xinjiang on the western end of the Altyn Tagh fault on March 21 st, 2008. It is difficult to access this depopulated zone because of the high altitude and only 1–2 months of snowmelt. This study utilized high-resolution 展开更多
关键词 DEM Application of High-Resolution Remote Sensing Technology in Quantitative Study on Coseismic surface rupture zones An Example of the 2008 M_w7.2 Yutian Earthquake
下载PDF
Deformation of the Most Recent Co-seismic Surface Ruptures Along the Garzê–Yushu Fault Zone(Dangjiang Segment)and Tectonic Implications For the Tibetan Plateau 被引量:3
4
作者 WU Jiwen HUANG Xuemeng XIE Furen 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第2期443-454,共12页
The Garzê–Yushu strike-slip fault in central Tibet is the locus of strong earthquakes(M 〉 7). The deformation and geometry of the co-seismic surface ruptures are reflected in the surface morphology of the fau... The Garzê–Yushu strike-slip fault in central Tibet is the locus of strong earthquakes(M 〉 7). The deformation and geometry of the co-seismic surface ruptures are reflected in the surface morphology of the fault and depend on the structure of the upper crust as well as the pre-existing tectonics. Therefore, the most recent co-seismic surface ruptures along the Garzê–Yushu fault zone(Dangjiang segment) reveal the surface deformation of the central Tibetan Plateau. Remote sensing images and field investigations suggest a 85 km long surface rupture zone(striking NW-NWW), less than 50 m wide, defined by discontinuous fault scarps, right-stepping en echelon tensional cracks and left-stepping mole tracks that point to a left-lateral strike-slip fault. The gullies that cross fault scarps record systematic left-lateral offsets of 1.8 m to 5.0 m owing to the most recent earthquake, with moment magnitude of about M 7.5, in the Dangjiang segment. Geological and geomorphological features suggest that the spatial distribution of the 1738 co-seismic surface rupture zone was controlled by the pre-existing active Garzê–Yushu fault zone(Dangjiang segment). We confirm that the Garzê–Yushu fault zone, a boundary between the Bayan Har Block to the north and the Qiangtang Block to the south, accommodates the eastward extrusion of the Tibetan Plateau and generates strong earthquakes that release the strain energy owing to the relative motion between the Bayan Har and Qiangtang Blocks. 展开更多
关键词 co-seismic surface rupture zone strike-slip fault Dangjiang fault Garzê–Yushu fault zone Tibetan Plateau Proto-Tethys
下载PDF
Parameters of Coseismic Reverse- and Oblique-Slip Surface Ruptures of the 2008 Wenchuan Earthquake,Eastern Tibetan Plateau 被引量:30
5
作者 XU Xiwei YU Guihua +4 位作者 CHEN Guihua RAN Yongkang LI Chenxia CHEN Yuegau CHANG Chungpai 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2009年第4期673-684,共12页
On May 12th, 2008, the Mw7.9 Wenchuan earthquake ruptured the Beichuan, Pengguan and Xiaoyudong faults simultaneously along the middle segment of the Longmenshan thrust belt at the eastern margin of the Tibetan platea... On May 12th, 2008, the Mw7.9 Wenchuan earthquake ruptured the Beichuan, Pengguan and Xiaoyudong faults simultaneously along the middle segment of the Longmenshan thrust belt at the eastern margin of the Tibetan plateau. Field investigations constrain the surface rupture pattern, length and offsets related to the Wenchuan earthquake. The Beichuan fault has a NE-trending rightlateral reverse rupture with a total length of 240 km. Reassessment yields a maximum vertical offset of 6.5±0.5 m and a maximum right-lateral offset of 4.9±0.5 m for its northern segment, which are the largest offsets found; the maximum vertical offset is 6.2±0.5 m for its southern segment. The Pengguan fault has a NE-trending pure reverse rupture about 72 km long with a maximum vertical offset of about 3.5 m. The Xiaoyudong fault has a NW-striking left-lateral reverse rupture about 7 km long between the Beichuan and Pengguan faults, with a maximum vertical offset of 3.4 m and left-lateral offset of 3.5 m. This pattern of multiple co-seismic surface ruptures is among the most complicated of recent great earthquakes and presents a much larger danger than if they ruptured individually. The rupture length is the longest for reverse faulting events ever reported. 展开更多
关键词 surface rupture zone coseismic offset Wenchuan earthquake LONGMENSHAN
下载PDF
Holocene activities of the Taigu fault zone,Shanxi Province, and their relations with the 1303 Hongdong M=8 earthquake 被引量:3
6
作者 XIE Xin-sheng(谢新生) +5 位作者 JIANG Wa-li(江娃利) WANG Huan-zhen(王焕贞) FENG Xi-ying(冯西英) 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2004年第3期308-321,共14页
No abstract available
关键词 Taigu fault Holocene activities 1303 Hongdong earthquake surface rupture zone
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部