期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Generalized model for laser-induced surface structure in metallic glass 被引量:1
1
作者 叶林茂 武振伟 +2 位作者 刘凯欣 汤秀章 熊向明 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第6期557-562,共6页
The details of the special three-dimensional micro-nano scale ripples with a period of hundreds of microns on the surfaces of a Zr-based and a La-based metallic glass irradiated separately by single laser pulse are in... The details of the special three-dimensional micro-nano scale ripples with a period of hundreds of microns on the surfaces of a Zr-based and a La-based metallic glass irradiated separately by single laser pulse are investigated.We use the small-amplitude capillary wave theory to unveil the ripple formation mechanism through considering each of the molten metallic glasses as an incompressible viscous fluid.A generalized model is presented to describe the special morphology,which fits the experimental result well.It is also revealed that the viscosity brings about the biggest effect on the monotone decreasing nature of the amplitude and the wavelength of the surface ripples.The greater the viscosity is,the shorter the amplitude and the wavelength are. 展开更多
关键词 metallic glasses pulse laser processing micro-nano scale surface structure VISCOSITY
下载PDF
Effect of Spatial and Temporal Scales on Habitat Suitability Modeling:A Case Study of Ommastrephes bartramii in the Northwest Pacific Ocean 被引量:2
2
作者 GONG Caixia CHEN Xinjun +1 位作者 GAO Feng TIAN Siquan 《Journal of Ocean University of China》 SCIE CAS 2014年第6期1043-1053,共11页
Temporal and spatial scales play important roles in fishery ecology,and an inappropriate spatio-temporal scale may result in large errors in modeling fish distribution.The objective of this study is to evaluate the ro... Temporal and spatial scales play important roles in fishery ecology,and an inappropriate spatio-temporal scale may result in large errors in modeling fish distribution.The objective of this study is to evaluate the roles of spatio-temporal scales in habitat suitability modeling,with the western stock of winter-spring cohort of neon flying squid (Ornmastrephes bartramii) in the northwest Pacific Ocean as an example.In this study,the fishery-dependent data from the Chinese Mainland Squid Jigging Technical Group and sea surface temperature (SST) from remote sensing during August to October of 2003-2008 were used.We evaluated the differences in a habitat suitability index model resulting from aggregating data with 36 different spatial scales with a combination of three latitude scales (0.5°,1 ° and 2°),four longitude scales (0.5°,1°,2° and 4°),and three temporal scales (week,fortnight,and month).The coefficients of variation (CV) of the weekly,biweekly and monthly suitability index (SI) were compared to determine which temporal and spatial scales of SI model are more precise.This study shows that the optimal temporal and spatial scales with the lowest CV are month,and 0.5° latitude and 0.5° longitude for O.bartramii in the northwest Pacific Ocean.This suitability index model developed with an optimal scale can be cost-effective in improving forecasting fishing ground and requires no excessive sampling efforts.We suggest that the uncertainty associated with spatial and temporal scales used in data aggregations needs to be considered in habitat suitability modeling. 展开更多
关键词 spatial and temporal scales data aggregation habitat suitability model sea surface temperature Ommastrephes bartramii northwest Pacific Ocean
下载PDF
Water-trapping and drag-reduction effects of fish Ctenopharyngodon idellus scales and their simulations 被引量:5
3
作者 WU LiYan JIAO ZhiBin +3 位作者 SONG YuQiu REN WenTao NIU ShiChao HAN ZhiWu 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第7期1111-1117,共7页
In the last decades, surface drag reduction has been re-emphasized because of its practical values in engineering applications,including vehicles, aircrafts, ships, and fuel pipelines. The bionic study of drag reducti... In the last decades, surface drag reduction has been re-emphasized because of its practical values in engineering applications,including vehicles, aircrafts, ships, and fuel pipelines. The bionic study of drag reduction has been attracting scholars' attentions. Here, it was determined that the delicate microstructures on the scales of the fish Ctenopharyngodon idellus exhibit remarkable drag-reduction effect. In addition, the underlying drag-reduction mechanism was carefully investigated. First,exceptional morphologies and structures of the scales were observed and measured using a scanning electron microscope and3-dimensional(3D) microscope. Then, based on the acquired data, optimized 3D models were created. Next, the mechanism of the water-trapping effect of these structures was analyzed through numerical simulations and theoretical calculations. It was determined that there are many microcrescent units with certain distributions on its surface. In fact, these crescents are effective in generating the "water-trapping" effect and forming a fluid-lubrication film, thus reducing the skin friction drag effectively.Contrasting to a smooth surface, the dynamics finite-element analysis indicated that the maximum drag-reduction rate of a bionic surface is 3.014% at 0.66 m/s flow rate. This study can be used as a reference for an in-depth analysis on the bionic drag reduction of boats, underwater vehicles, and so forth. 展开更多
关键词 water trapping structure drag reduction surface fish scales simulations bionic surface and interface
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部