According to inverse heat transfer theory, the evolutions of synthetic surface heat transfer coefficient(SSHTC) of the quenching surface of 7B50 alloy during water-spray quenching were simulated by the Pro CAST soft...According to inverse heat transfer theory, the evolutions of synthetic surface heat transfer coefficient(SSHTC) of the quenching surface of 7B50 alloy during water-spray quenching were simulated by the Pro CAST software based on accurate cooling curves measured by the modified Jominy specimen and temperature-dependent thermo-physical properties of 7 B50 alloy calculated using the JMat Pro software. Results show that the average cooling rate at 6 mm from the quenching surface and 420-230 ℃(quench sensitive temperature range) is 45.78℃/s. The peak-value of the SSHTC is 69 kW/(m^2·K) obtained at spray quenching for 0.4 s and the corresponding temperature of the quenching surface is 160 ℃. In the initial stage of spray quenching, the phenomenon called "temperature plateau" appears on the cooling curve of the quenching surface. The temperature range of this plateau is 160-170℃ with the duration about 3 s. During the temperature plateau, heat transfer mechanism of the quenching surface transforms from nucleate boiling regime to single-phase convective regime.展开更多
The effect of quenching rate on the aging precipitation behavior and properties of Al-Zn-Mg-Cu-Zr-Er alloy was investigated.The scanning electron microscopy,transmission electron microscopy,and atom probe tomography w...The effect of quenching rate on the aging precipitation behavior and properties of Al-Zn-Mg-Cu-Zr-Er alloy was investigated.The scanning electron microscopy,transmission electron microscopy,and atom probe tomography were used to study the characteristics of clusters and precipitates in the alloy.The quench-inducedηphase and a large number of clusters are formed in the air-cooled alloy with the slowest cooling rate,which contributes to an increment of hardness by 24%(HV 26)compared with that of the water-quenched one.However,the aging hardening response speed and peak-aged hardness of the alloy increase with the increase of quenching rate.Meanwhile,the water-quenched alloy after peak aging also has the highest strength,elongation,and corrosion resistance,which is due to the high driving force and increased number density of aging precipitates,and the narrowed precipitate free zones.展开更多
We investigated the optical properties of hybrid exciton–plasmon coupling ensembles composed of ZnSe/ZnS quantum dots and Ag nanoparticles in aqueous solution. We modulated their average interval by changing the rati...We investigated the optical properties of hybrid exciton–plasmon coupling ensembles composed of ZnSe/ZnS quantum dots and Ag nanoparticles in aqueous solution. We modulated their average interval by changing the ratio of quantum dots and Ag nanoparticles. The transition from dramatic PL enhancement to PL quenching state was experimentally observed, according to the continuous decrease of the PL lifetime. The PL enhancement rate exceeded 10, with the Purcell factor of 3.5. Meanwhile, the proportion of fast decay increased from 0.3 to 0.6, corresponding to the proportion of slow decay decreased from 0.7 to 0.4. Our experiment is important for the hybrid exciton–plasmon coupling system to be practicable in optoelectronic application.展开更多
The integral impeller and blisk of an aero-engine are high performance parts with complex structure and made of difficult-to-cut materials. The blade surfaces of the integral impeller and blisk are functional surfaces...The integral impeller and blisk of an aero-engine are high performance parts with complex structure and made of difficult-to-cut materials. The blade surfaces of the integral impeller and blisk are functional surfaces for power transmission, and their surface integrity has signif- icant effects on the aerodynamic efficiency and service life of an aero-engine. Thus, it is indispensable to finish and strengthen the blades before use. This paper presents a comprehensive literature review of studies on finishing and strengthening technologies for the impeller and blisk of aero-engines. The review includes independent and inte- grated finishing and strengthening technologies and dis- cusses advanced rotational abrasive flow machining with back-pressure used for finishing the integral impeller and blisk. A brief assessment of future research problems and directions is also presented.展开更多
Ultrasonic cavitation modification(UCM)employs cavitation effect to induce strong plastic deformation on the material surface and improve surface properties.To explore the surface strengthening and grain refinement of...Ultrasonic cavitation modification(UCM)employs cavitation effect to induce strong plastic deformation on the material surface and improve surface properties.To explore the surface strengthening and grain refinement of materials by UCM,the UCM orthogonal experiments of AZ31 B magnesium alloy were carried out in water and kerosene,respectively.The effects of ultrasonic amplitude,distance from the sample,and processing time on Vickers hardness and grain size of the material were studied.The results showed that the Vickers hardness of samples increased to1.5–3 times after UCM in water,which was 23.77–48.19%higher than that in kerosene.The metallographic observation indicated the grains on the surface of AZ31 B were refined after UCM.The maximum fluctuation of grain size on the material surface was not more than 10 lm after UCM in water,and most of them were concentrated between 1.5 lm and 2.5 lm,while the former was more than 40 lm and the latter were concentrated between 2 lm and 10 lm in kerosene.This reflected that the grain refinement effect of UCM in water was better than that in kerosene.Ultrasonic cavitation can be used as a benign means to improve the surface properties of materials.展开更多
In order to repair and reuse remaining quenching surface(RQS)divided into severely worn surface(SWun-S)and mildly worn surface(MWun-S)of abandoned gray cast iron guide rail,inspired by the bionic theory,varying forms ...In order to repair and reuse remaining quenching surface(RQS)divided into severely worn surface(SWun-S)and mildly worn surface(MWun-S)of abandoned gray cast iron guide rail,inspired by the bionic theory,varying forms of bionic units such as spot(Sp-S),striation(St-S),and reticulation(Re-S)were fabricated on RQS of gray cast iron through laser processing technology.Firstly,the microstructure,phase composition,and microhardness of bionic units and RQS were analyzed by optical microscopy as well as X-ray diffraction instrument and scanning electron microscopy,respectively.Secondly,the oil lubrication wear experiment was performed on homemade line reciprocating wear machine.The results demonstrated that the bionic units had a significant effect on improving wear resistance of RQS of abandoned guide rail due to the microstructure and higher hardness.In addition,the weight loss ratios of MWun-S,Sp-S,St-S,and Re-S samples were decreased by 36.72%,36.78%,62.26%,and 80.39%,respectively,compared with that of SWun-S sample.The mechanism of wear resistance enhancement was also discussed.展开更多
A new surface strengthening technology, luster polish strengthening treatment, was proposed to treat the raceway surface of aeroengine bearings (9Cr18Mo) with the centrifugal strengthening machine exclusively design...A new surface strengthening technology, luster polish strengthening treatment, was proposed to treat the raceway surface of aeroengine bearings (9Cr18Mo) with the centrifugal strengthening machine exclusively designed for luster polish strengthening treatment. The experimental results showed that luster polish strengthening treatment produced a compressive residual stress layer with a depth of over 80 μm below the surface of the bearing raceway, and thus effectively removed the metamorphic layer in the raceway surface. After luster polish strengthening treatment, the average surface hardness of the aeroengine bearing raceway was increased from 61.02 HRC to 63.01 HRC, the surface roughness was reduced from 0.06 μm to 0.03 μm, and the contact fatigue life of the aeroengine bearings was improved by about 90%, with the dispersion of fatigue life being reduced remarkably. Theoretical calculation result agrees with that obtained by experiment.展开更多
A flow system was set up to measure the quenching probability ~ of O2(1△g) on various O2- adsorbed metal surfaces including Cu, Cr, Ni, and Ag. increased with both the duration of the experiment and the O2(1△g)...A flow system was set up to measure the quenching probability ~ of O2(1△g) on various O2- adsorbed metal surfaces including Cu, Cr, Ni, and Ag. increased with both the duration of the experiment and the O2(1△g) concentration. After several hours evacuation to a few Pa, γ can return to its original value. A deactivation mechanism of O2(1△g) is suggested by considering first the weak chemisorption of O2(1△g) on the surface adsorption sites, followed by the near resonant energy transfer between the gas phase O2(1△g) and surface O2(1△g). A phenomenological model in accord with the experimental fact has been proposed together with relevant kinetic equations.展开更多
At present,there are many studies on the residual stress field and plastic strain field introduced by surface strengthening,which can well hinder the initiation of early fatigue cracks and delay the propagation of fat...At present,there are many studies on the residual stress field and plastic strain field introduced by surface strengthening,which can well hinder the initiation of early fatigue cracks and delay the propagation of fatigue cracks.However,there are few studies on the effects of these key factors on fretting wear.In the paper,shot-peening(SP)and ultrasonic surface rolling process(USRP)were performed on Ti-6Al-4V plate specimens.The surface hardness and residual stresses of the material were tested by vickers indenter and X-ray diffraction residual stress analyzer.Microhardness were measured by HXD-1000MC/CD micro Vickers hardness tester.The effects of different surface strengthening on its fretting fatigue properties were verified by fretting fatigue experiments.The fretting fatigue fracture surface and wear morphology of the specimens were studied and analyzed by means of microscopic observation,and the mechanism of improving fretting fatigue life by surface strengthening process was further explained.After USRP treatment,the surface roughness of Ti-6Al-4V is significantly improved.In addition,the microhardness of the specimen after SP reaches the maximum at 80μm from the surface,which is about 123%higher than that of the AsR specimen.After USRP,it reaches the maximum at 150μm from the surface,which is about 128%higher than that of AsR specimen.It is also found that the residual compressive stress of the specimens treated by USRP and SP increases first and then decreases with the depth direction,and the residual stress reaches the maximum on the sub surface.The USRP specimen reaches the maximum value at 0.18 mm,about−550 MPa,while the SP specimen reaches the maximum value at 0.1 mm,about−380 MPa.The fretting fatigue life of Ti-6Al-4V effectively improved after USRP and SP.The surface integrity of specimens after USRP is the best,which has deeper residual compressive stress layer and more refined grain.In this paper,a fretting wear device is designed to carry out fretting fatigue experiments on specimens with different surface strengthening.展开更多
The technical connotation of surface metallurgical technology by DC-Plasma-Jet is a kind of rapid, non- equilibrium metallurgical process which is similar to powder metallurgy. Accordingly the specialized equipment is...The technical connotation of surface metallurgical technology by DC-Plasma-Jet is a kind of rapid, non- equilibrium metallurgical process which is similar to powder metallurgy. Accordingly the specialized equipment is developed all by ourselves, which is not subjected to limitation of solubility, melting point, density of constituents, therefore pre-alloy powders are not needed. The plasma surface metallurgical coating using Fe-Cr-C-Ni-B-Si mixed alloy powders has good wettability with substrate material. The metallurgical coating has apparent characteristics of rapid and layered crystallization from planar crystal-cell to dendritic transition zone at the interface, from dendritic crystal to equiaxed crystal in the midst, from equiaxed crystal to spike crystal on the surface. Its metastable microstructure is complex phase of supersaturated γ- ( Fe, Ni ) dendritic crystal solutioning great amount of alloy element and interdendritic eutectic structure ( Cr, Fe) γ ( C, B) 3 and T-(Fe,Ni).展开更多
The application of fiber reinforced plastic(FRP),including carbon FRP and glass FRP,for structural repair and strengthening has grown due to their numerous advantages over conventional materials such as externally b...The application of fiber reinforced plastic(FRP),including carbon FRP and glass FRP,for structural repair and strengthening has grown due to their numerous advantages over conventional materials such as externally bonded reinforcement(EBR) and near-surface mounted(NSM) strengthening techniques.This paper summarizes the results from 21 reinforced concrete beams strengthened with different methods,including externally-bonded and near-surface mounted FRP,to study the strain coordination of the FRP and steel rebar of the RC beam.Since there is relative slipping between the RC beam and the FRP,the strain of the FRP and steel rebar of the RC beam satisfy the quasi-plane-hypothesis;that is,the strain of the longitudinal fiber that parallels the neutral axis of the plated beam within the scope of the effective height(h 0) of the cross section is in direct proportion to the distance from the fiber to the neutral axis.The strain of the FRP and steel rebar satisfies the equation:ε FRP =βε steel,and the value of β is equal to 1.1-1.3 according to the test results.展开更多
The orientation relationships,carbon partitioning and strengthening mechanism of a novel ultrahigh strength steel were analyzed in depth during the complex process of heat treatment.The experimental results reveal tha...The orientation relationships,carbon partitioning and strengthening mechanism of a novel ultrahigh strength steel were analyzed in depth during the complex process of heat treatment.The experimental results reveal that the(011)α//()γ,[100]α//[011]γ orientation relationships can be drawn between martensite and retained austenite.The position and angle of martensite and retained austenite are shown more clearly from the stereographic projections.Moreover,the calculated results show that the carbon content near the austenite interface is the highest in the shorter carbon allocation time.With the further increase of time,its carbon content gradually decreases.Furthermore,a model of the relationship between yield strength and strengthening mechanism was established.It was proved that the main strengthening components contributing to the yield strength include Orowan strengthening,grain-size strengthening and dislocation hardening.The main strengthening mechanism of steel in this experiment is dislocation strengthening.展开更多
This paper presents a focused study on using different methods to enhance the ultimate capacity of flexural behavior in RC slabs. Four RC specimens were casted with common compressive strength and reinforced with stee...This paper presents a focused study on using different methods to enhance the ultimate capacity of flexural behavior in RC slabs. Four RC specimens were casted with common compressive strength and reinforced with steel mesh. Specimens were strengthened with different methods such as usage of GFRP sheets, carbon fibers laminate strips and near surface mounted steel rebars. All specimens were subjected to two-point loading setup. Load was increased from zero to failure load. First crack was recorded and crack pattern was observed. The behavior of strengthened specimens was compared to that of the control specimen to judge the efficiency of the used techniques. Test results showed that the used techniques were effective in enhancing the behavior of the strengthened slabs by noteworthy values.展开更多
基金Project(2016YFB0300801)supported by the National Key Research and Development Program of ChinaProject(51371045)supported by the National Natural Science Foundation of China
文摘According to inverse heat transfer theory, the evolutions of synthetic surface heat transfer coefficient(SSHTC) of the quenching surface of 7B50 alloy during water-spray quenching were simulated by the Pro CAST software based on accurate cooling curves measured by the modified Jominy specimen and temperature-dependent thermo-physical properties of 7 B50 alloy calculated using the JMat Pro software. Results show that the average cooling rate at 6 mm from the quenching surface and 420-230 ℃(quench sensitive temperature range) is 45.78℃/s. The peak-value of the SSHTC is 69 kW/(m^2·K) obtained at spray quenching for 0.4 s and the corresponding temperature of the quenching surface is 160 ℃. In the initial stage of spray quenching, the phenomenon called "temperature plateau" appears on the cooling curve of the quenching surface. The temperature range of this plateau is 160-170℃ with the duration about 3 s. During the temperature plateau, heat transfer mechanism of the quenching surface transforms from nucleate boiling regime to single-phase convective regime.
基金the financial supports from the National Natural Science Foundation of China(No.51871033)the Opening Project of State Key Laboratory for Advanced Metals and Materials,China(No.2020-ZD02)。
文摘The effect of quenching rate on the aging precipitation behavior and properties of Al-Zn-Mg-Cu-Zr-Er alloy was investigated.The scanning electron microscopy,transmission electron microscopy,and atom probe tomography were used to study the characteristics of clusters and precipitates in the alloy.The quench-inducedηphase and a large number of clusters are formed in the air-cooled alloy with the slowest cooling rate,which contributes to an increment of hardness by 24%(HV 26)compared with that of the water-quenched one.However,the aging hardening response speed and peak-aged hardness of the alloy increase with the increase of quenching rate.Meanwhile,the water-quenched alloy after peak aging also has the highest strength,elongation,and corrosion resistance,which is due to the high driving force and increased number density of aging precipitates,and the narrowed precipitate free zones.
基金Project supported by the National Key R&D Program of China(Grant No.2018YFA0306304)the National Natural Science Foundation of China(Grant No.11674069)
文摘We investigated the optical properties of hybrid exciton–plasmon coupling ensembles composed of ZnSe/ZnS quantum dots and Ag nanoparticles in aqueous solution. We modulated their average interval by changing the ratio of quantum dots and Ag nanoparticles. The transition from dramatic PL enhancement to PL quenching state was experimentally observed, according to the continuous decrease of the PL lifetime. The PL enhancement rate exceeded 10, with the Purcell factor of 3.5. Meanwhile, the proportion of fast decay increased from 0.3 to 0.6, corresponding to the proportion of slow decay decreased from 0.7 to 0.4. Our experiment is important for the hybrid exciton–plasmon coupling system to be practicable in optoelectronic application.
基金Supported by Science Fund for Creative Research Groups of NSFC(51621064)National Natural Science Foundation of China(Grant No.51475074,11302043)the Fundamental Research Funds for the Central Universities(DUT15QY37)
文摘The integral impeller and blisk of an aero-engine are high performance parts with complex structure and made of difficult-to-cut materials. The blade surfaces of the integral impeller and blisk are functional surfaces for power transmission, and their surface integrity has signif- icant effects on the aerodynamic efficiency and service life of an aero-engine. Thus, it is indispensable to finish and strengthen the blades before use. This paper presents a comprehensive literature review of studies on finishing and strengthening technologies for the impeller and blisk of aero-engines. The review includes independent and inte- grated finishing and strengthening technologies and dis- cusses advanced rotational abrasive flow machining with back-pressure used for finishing the integral impeller and blisk. A brief assessment of future research problems and directions is also presented.
基金the National Natural Science Foundation of China(Nos.52005455 and 51975540)Shanxi Province Science Foundation for Youths(Nos.201901D211205 and 201901D211201)+2 种基金the Coal Seam Gas Joint Foundation of Shaanxi Province(No.2015012018)the Opening Foundation of Shanxi Key Laboratory of Advanced Manufacturing Technology(No.XJZZ202002)the Science and Technology Innovation Project of Shanxi Colleges and Universities(No.2019L0592)。
文摘Ultrasonic cavitation modification(UCM)employs cavitation effect to induce strong plastic deformation on the material surface and improve surface properties.To explore the surface strengthening and grain refinement of materials by UCM,the UCM orthogonal experiments of AZ31 B magnesium alloy were carried out in water and kerosene,respectively.The effects of ultrasonic amplitude,distance from the sample,and processing time on Vickers hardness and grain size of the material were studied.The results showed that the Vickers hardness of samples increased to1.5–3 times after UCM in water,which was 23.77–48.19%higher than that in kerosene.The metallographic observation indicated the grains on the surface of AZ31 B were refined after UCM.The maximum fluctuation of grain size on the material surface was not more than 10 lm after UCM in water,and most of them were concentrated between 1.5 lm and 2.5 lm,while the former was more than 40 lm and the latter were concentrated between 2 lm and 10 lm in kerosene.This reflected that the grain refinement effect of UCM in water was better than that in kerosene.Ultrasonic cavitation can be used as a benign means to improve the surface properties of materials.
基金supported by Project 985-High Performance Materials of Jilin UniversityProject 985-Bionic Engineering Science and Technology Innovationdouble first-class project by Jilin Province and Jilin University(SXGJXX2017-14).
文摘In order to repair and reuse remaining quenching surface(RQS)divided into severely worn surface(SWun-S)and mildly worn surface(MWun-S)of abandoned gray cast iron guide rail,inspired by the bionic theory,varying forms of bionic units such as spot(Sp-S),striation(St-S),and reticulation(Re-S)were fabricated on RQS of gray cast iron through laser processing technology.Firstly,the microstructure,phase composition,and microhardness of bionic units and RQS were analyzed by optical microscopy as well as X-ray diffraction instrument and scanning electron microscopy,respectively.Secondly,the oil lubrication wear experiment was performed on homemade line reciprocating wear machine.The results demonstrated that the bionic units had a significant effect on improving wear resistance of RQS of abandoned guide rail due to the microstructure and higher hardness.In addition,the weight loss ratios of MWun-S,Sp-S,St-S,and Re-S samples were decreased by 36.72%,36.78%,62.26%,and 80.39%,respectively,compared with that of SWun-S sample.The mechanism of wear resistance enhancement was also discussed.
基金The National Key Project of China duringthe 10th Five-Year Plan Period (NoMKPT-01-004(ZD))
文摘A new surface strengthening technology, luster polish strengthening treatment, was proposed to treat the raceway surface of aeroengine bearings (9Cr18Mo) with the centrifugal strengthening machine exclusively designed for luster polish strengthening treatment. The experimental results showed that luster polish strengthening treatment produced a compressive residual stress layer with a depth of over 80 μm below the surface of the bearing raceway, and thus effectively removed the metamorphic layer in the raceway surface. After luster polish strengthening treatment, the average surface hardness of the aeroengine bearing raceway was increased from 61.02 HRC to 63.01 HRC, the surface roughness was reduced from 0.06 μm to 0.03 μm, and the contact fatigue life of the aeroengine bearings was improved by about 90%, with the dispersion of fatigue life being reduced remarkably. Theoretical calculation result agrees with that obtained by experiment.
基金This work was supported by the National Natural Science Foundation of China (No.20703045) and the National Key Basic Research and Science Foundation (No.2007CBS15202).
文摘A flow system was set up to measure the quenching probability ~ of O2(1△g) on various O2- adsorbed metal surfaces including Cu, Cr, Ni, and Ag. increased with both the duration of the experiment and the O2(1△g) concentration. After several hours evacuation to a few Pa, γ can return to its original value. A deactivation mechanism of O2(1△g) is suggested by considering first the weak chemisorption of O2(1△g) on the surface adsorption sites, followed by the near resonant energy transfer between the gas phase O2(1△g) and surface O2(1△g). A phenomenological model in accord with the experimental fact has been proposed together with relevant kinetic equations.
基金Supported by National Key Research and Development Project(Grant No.2018YFC1902400)Natural Science Foundation of Shanghai(Grant No.20ZR1415300).
文摘At present,there are many studies on the residual stress field and plastic strain field introduced by surface strengthening,which can well hinder the initiation of early fatigue cracks and delay the propagation of fatigue cracks.However,there are few studies on the effects of these key factors on fretting wear.In the paper,shot-peening(SP)and ultrasonic surface rolling process(USRP)were performed on Ti-6Al-4V plate specimens.The surface hardness and residual stresses of the material were tested by vickers indenter and X-ray diffraction residual stress analyzer.Microhardness were measured by HXD-1000MC/CD micro Vickers hardness tester.The effects of different surface strengthening on its fretting fatigue properties were verified by fretting fatigue experiments.The fretting fatigue fracture surface and wear morphology of the specimens were studied and analyzed by means of microscopic observation,and the mechanism of improving fretting fatigue life by surface strengthening process was further explained.After USRP treatment,the surface roughness of Ti-6Al-4V is significantly improved.In addition,the microhardness of the specimen after SP reaches the maximum at 80μm from the surface,which is about 123%higher than that of the AsR specimen.After USRP,it reaches the maximum at 150μm from the surface,which is about 128%higher than that of AsR specimen.It is also found that the residual compressive stress of the specimens treated by USRP and SP increases first and then decreases with the depth direction,and the residual stress reaches the maximum on the sub surface.The USRP specimen reaches the maximum value at 0.18 mm,about−550 MPa,while the SP specimen reaches the maximum value at 0.1 mm,about−380 MPa.The fretting fatigue life of Ti-6Al-4V effectively improved after USRP and SP.The surface integrity of specimens after USRP is the best,which has deeper residual compressive stress layer and more refined grain.In this paper,a fretting wear device is designed to carry out fretting fatigue experiments on specimens with different surface strengthening.
文摘The technical connotation of surface metallurgical technology by DC-Plasma-Jet is a kind of rapid, non- equilibrium metallurgical process which is similar to powder metallurgy. Accordingly the specialized equipment is developed all by ourselves, which is not subjected to limitation of solubility, melting point, density of constituents, therefore pre-alloy powders are not needed. The plasma surface metallurgical coating using Fe-Cr-C-Ni-B-Si mixed alloy powders has good wettability with substrate material. The metallurgical coating has apparent characteristics of rapid and layered crystallization from planar crystal-cell to dendritic transition zone at the interface, from dendritic crystal to equiaxed crystal in the midst, from equiaxed crystal to spike crystal on the surface. Its metastable microstructure is complex phase of supersaturated γ- ( Fe, Ni ) dendritic crystal solutioning great amount of alloy element and interdendritic eutectic structure ( Cr, Fe) γ ( C, B) 3 and T-(Fe,Ni).
基金Consultative Program of the Chinese Academy of Engineeringthe foundation for Excellent Young of Hunan Scientific Committee+1 种基金the National Natural Science Foundation of Hunan Provincethe Science and Research Program of Hunan Province
文摘The application of fiber reinforced plastic(FRP),including carbon FRP and glass FRP,for structural repair and strengthening has grown due to their numerous advantages over conventional materials such as externally bonded reinforcement(EBR) and near-surface mounted(NSM) strengthening techniques.This paper summarizes the results from 21 reinforced concrete beams strengthened with different methods,including externally-bonded and near-surface mounted FRP,to study the strain coordination of the FRP and steel rebar of the RC beam.Since there is relative slipping between the RC beam and the FRP,the strain of the FRP and steel rebar of the RC beam satisfy the quasi-plane-hypothesis;that is,the strain of the longitudinal fiber that parallels the neutral axis of the plated beam within the scope of the effective height(h 0) of the cross section is in direct proportion to the distance from the fiber to the neutral axis.The strain of the FRP and steel rebar satisfies the equation:ε FRP =βε steel,and the value of β is equal to 1.1-1.3 according to the test results.
基金Funded by the Key Research and Development(R&D)Projects of Shanxi Province(No.201803D121028)the Research Project Supported by Shanxi Scholarship Council of China(No.2021-122)+1 种基金the Fundamental Research Program of Shanxi Province(No.20210302123014)the Shanxi Province Science Foundation for Youths(No.201901D211266)。
文摘The orientation relationships,carbon partitioning and strengthening mechanism of a novel ultrahigh strength steel were analyzed in depth during the complex process of heat treatment.The experimental results reveal that the(011)α//()γ,[100]α//[011]γ orientation relationships can be drawn between martensite and retained austenite.The position and angle of martensite and retained austenite are shown more clearly from the stereographic projections.Moreover,the calculated results show that the carbon content near the austenite interface is the highest in the shorter carbon allocation time.With the further increase of time,its carbon content gradually decreases.Furthermore,a model of the relationship between yield strength and strengthening mechanism was established.It was proved that the main strengthening components contributing to the yield strength include Orowan strengthening,grain-size strengthening and dislocation hardening.The main strengthening mechanism of steel in this experiment is dislocation strengthening.
文摘This paper presents a focused study on using different methods to enhance the ultimate capacity of flexural behavior in RC slabs. Four RC specimens were casted with common compressive strength and reinforced with steel mesh. Specimens were strengthened with different methods such as usage of GFRP sheets, carbon fibers laminate strips and near surface mounted steel rebars. All specimens were subjected to two-point loading setup. Load was increased from zero to failure load. First crack was recorded and crack pattern was observed. The behavior of strengthened specimens was compared to that of the control specimen to judge the efficiency of the used techniques. Test results showed that the used techniques were effective in enhancing the behavior of the strengthened slabs by noteworthy values.