The lack of experimental data and / or limited experimental information concerning both surface and transport properties of liquid alloys often require the prediction of these quantities. An attempt has been made to l...The lack of experimental data and / or limited experimental information concerning both surface and transport properties of liquid alloys often require the prediction of these quantities. An attempt has been made to link the thermophysical properties of a ternary Cu-Sn-Ti system and its binary Cu-Sn, Cu-Ti and SnoTi subsystems with the bulk through the study of the concentration dependence of various thermodynamic, structural, surface and dynamic properties in the frame of the statistical mechanical theory in conjunction with the quasi-lattice theory (QLT). This formalism provides valuable qualitative insight into mixing processes that occur in molten alloys.展开更多
基金This work was financially supported by THERMOLAB - ESA MAP PROJECT, Contract No. AO-99-022. A part of this work was performed in the framework of the E.C. action COST 531 project: "Lead-free solder materials".
文摘The lack of experimental data and / or limited experimental information concerning both surface and transport properties of liquid alloys often require the prediction of these quantities. An attempt has been made to link the thermophysical properties of a ternary Cu-Sn-Ti system and its binary Cu-Sn, Cu-Ti and SnoTi subsystems with the bulk through the study of the concentration dependence of various thermodynamic, structural, surface and dynamic properties in the frame of the statistical mechanical theory in conjunction with the quasi-lattice theory (QLT). This formalism provides valuable qualitative insight into mixing processes that occur in molten alloys.