Manure management is an essential component of dairy production. Nutrient-laden, field-applied dairy manure often serves as a fertilizer source, but can also pose environmental threats if not properly managed. The Haa...Manure management is an essential component of dairy production. Nutrient-laden, field-applied dairy manure often serves as a fertilizer source, but can also pose environmental threats if not properly managed. The Haak dairy farm, located in Decatur, Arkansas, was granted a permit by the Arkansas Department of Environmental Quality (ADEQ) to employ a unique method in treating and storing cattle manure generated during the milking process. This method includes minimizing water use in wash water, dry scraping solids to combine with sawdust for composting and pumping effluent underground into a sloped concrete basin that serves as secondary solid separator before transporting the manure effluent into an interception trench and an adjacent grassed field to facilitate manure nutrient uptake and retention. The Arkansas Discovery Farm program (ADF) is conducting research to evaluate the environmental performance of the dairy’s milk center wash water treatment system (MCWW) by statistical analysis, characterization of phosphorus (P) migration in soil downslope from the inception trench, temperature measurements, and nutrient analysis of a stored dry stack manure/sawdust mixture. Goals included determining possible composting effectiveness along with comparisons to untreated dairy manure and quantifying the use of on-farm water. Results from this research demonstrated that: 1) The MCWW was effective at retaining manure-derived nutrients and reducing field nutrient migration as the MCWW interception trench had significantly higher total nitrogen (TN) (804.2 to 4.1), total phosphorus (TP) (135.6 to 1.5), and water extractable phosphorus (WEP) (55.0 to 1.0) concentrations in milligrams per liter (mg⋅L<sup>-1</sup>) than the downhill freshwater pond respectively;2) temperature readings of the manure dry stack indicated heightened levels of microbial and thermal activity, but did not reach a standard composting temperature of 54°C;3) manure dry stack nutrient content was typically higher than untreated dairy manure when measured on a “dry basis” in ppm, but was lower on an “as is basis” in ppm and kg/metric ton;and 4) water meter readings showed that the greatest use of on-farm water was for farm-wide cattle drinking (18.77), followed by water used in the milking center (3.45) and then followed by human usage (0.02) measured in cubic meters per day (m<sup>3</sup>⋅d<sup>-1</sup>). These results demonstrate that practical innovations in agricultural engineering and environmental science, such as the Haak dairy’s manure treatment system, can effectively reduce environmental hazards that accompany the management of manure at this dairy operation.展开更多
In the purpose of defining typical urban water management challenges in coastal lowlands in the context of global climate change, a comparative study was conducted between two coastal new towns respectively located in...In the purpose of defining typical urban water management challenges in coastal lowlands in the context of global climate change, a comparative study was conducted between two coastal new towns respectively located in the Netherlands and Northern China. Comparative method is applied to define main functioning patterns of urban water systems in the two cases, then computer simulations were used to furthercompare drainage capacity in order to reveal the trends of urban water management. Major resulthas shown that Almere in the Netherlands generally more advanced in urban water management asmultiple functioning patterns are available.Strong dykes maintain competence for land subsidence and sea level rise. Open water system decreases local runoff and increaseswater retention level. Systematic control ofsluicesand locks which serve for shipping and waterfront landscaping are simultaneously isolating contaminants from outer water body. Tianjin Eco-city in China has shown both strengths and weaknesses. It takes large amount of reclaimed water as main landscaping water source, which adapts to local water pollution and shortage while requires highly centralized facilities. Large water body is reserved and huge scale underground drainage system built, but it is still vulnerable to heavy storms due to the lack of efficient surface water drainage system. Coastal line control does not adequately prevent from increasing storm surge risks in the future. SWMMsimulations have supported the viewpoint ofdistributed surface water with a higher efficiency for storm drainage. Meanwhile, surface water system returns more added values to urban development. The study is corresponding well with the theory of water sensitive city. As a conclusion, urban water system should always incorporate methods to achieve higher system resilience based on multiple functioning patterns.展开更多
The development of oasis along the edge of the Tengerli Desert, where underground water is available, is one of the major strategies to reallocate 'ecological refuges' from their seriously degraded grasslands ...The development of oasis along the edge of the Tengerli Desert, where underground water is available, is one of the major strategies to reallocate 'ecological refuges' from their seriously degraded grasslands to agriculturally cultivable land. Yet, underground water resources, the major constraint, hate not been fully integrated in the development process. Therefore, the decline of water resources and deterioration of water quality caused by over-consumption of water resources has begun to hinder further development and has even fed to the abandonment of some oasis. A system dynamics modeling approach is applied to analyze the water use and water management structures in Yaoba Oasis as a case study. The study attempts to identify the characteristics of major feedback loops, which dominate the over-use of underground water resources leading to the deterioration of water resources in quantity and quality.展开更多
The use of pelletized poultry litter (PPL) as a substitute for inorganic fertilizers is increasingly being en-couraged in states like Delaware which have a considerable surplus of poultry litter. However, we know very...The use of pelletized poultry litter (PPL) as a substitute for inorganic fertilizers is increasingly being en-couraged in states like Delaware which have a considerable surplus of poultry litter. However, we know very little about the impacts of PPL on runoff water quality and whether it is an environmentally-sound and sus-tainable alternative to inorganic fertilizer. To address these questions we compared the exports of nutrients (NH4-N, NO3-N and PO4-P) and trace elements (As, Cu, and Zn) in surface runoff from agricultural plots receiving PPL, raw poultry litter (RPL), urea and no-fertilizer (control) treatments. The study was conducted on agricultural land located in Middletown, Delaware with corn as the cover crop. The experimental plots were 5 m wide and 12 m long with reduced tillage and no-tillage management practices. Sampling was con-ducted for six natural rainfall events from April through August 2008. Nutrient (NH4-N, NO3-N and PO4-P) exports from plots receiving PPL were less than those with urea or raw litter applications. While exports of trace elements from the PPL treatment exceeded those from urea, they were much lower than the corre-sponding exports from the RPL treatments. Mass exports of nutrients and trace elements were correlated with event size (rainfall amount) but were not correlated with timing of event (days since litter application). Results from this study suggest that the use of PPL in combination with no-tillage may provide an environ-mentally safe alternative to synthetic fertilizers.展开更多
The article deals with modeling the tailing ponds influence on water resources. New technology using hydrocyclons of new design has been offered for additional purification of gold dressing mill wastewater. Laboratory...The article deals with modeling the tailing ponds influence on water resources. New technology using hydrocyclons of new design has been offered for additional purification of gold dressing mill wastewater. Laboratory and plant test have determined the optimal parameters of hydrocyclon. Introduction of new technology into system of water supply will prevent environment pollution and make it possible to process recoverable resources.展开更多
This research is concerned with new developments and practical applications of a physically-based numerical model that incorporates new approaches for a finite elements solution to the steady/transient problems of the...This research is concerned with new developments and practical applications of a physically-based numerical model that incorporates new approaches for a finite elements solution to the steady/transient problems of the joint ground/surface water flows. Python scripts are implemented in Geographic Information System (GIS) to store, represent and take decisions on the simulated conditions related to the water resources management at the scale of the watershed. The proposed surface-subsurface model considers surface and groundwater interactions to be 2-D horizontally distributed and depth-averaged through a diffusive wave approach for surface flood routing. Infiltration rates, overland flows and evapotranspiration processes are considered by a diffuse discharge from surface water, non-saturated subsoil and groundwater table. Recent developments also allow for the management of surface water flow control through the capacity of diversion on river beds, spillways and outflow operations of floodgates in weirs and dams of reservoirs. Practical application regards the actual hydrology of the Mero River watershed, with two important water bodies mainly concerned with the water resources management at the Cecebre Reservoir and the present flooding of a deep coal mining excavation. The MELEF model (Modèle d’éLéments Fluides, in French) was adapted and calibrated during a period of five years (2008/ 2012) with the help of hydrological parameters, registered flow rates, water levels and registered precipitation, water uses and water management operations in surface and groundwater bodies. The results predict the likely evolution of the Cecebre Reservoir, the flow rates in rivers, the flooding of the Meirama open pit and the local water balances for different hydrological components.展开更多
Classification of groundwater conditions at the watershed scale synthesizes landscape hydrology, provides a mapped summary of groundwater resources, and supports water management decisions. The application of a recent...Classification of groundwater conditions at the watershed scale synthesizes landscape hydrology, provides a mapped summary of groundwater resources, and supports water management decisions. The application of a recently developed watershed-scale groundwater classification methodology is applied and evaluated in the 100,000 hectare lower Ruby Valley watershed of southwestern Montana. The geologic setting, groundwater flow direction, aquifer productivity, water quality, anthropogenic impact to water levels, depth to groundwater, and the degree of connection between groundwater and surface water are key components of the classification scheme. This work describes the hydrogeology of the lower Ruby Valley watershed and illustrates how the classification system is applied to assemble, analyze, and summarize groundwater data. The classification process provides information in summary tables and maps of seamless digital overlays prepared using geographical information system (GIS) software. Groundwater conditions in the watershed are classified as low production bedrock aquifers in the mountainous uplands that recharge the moderate productivity basin-fill sediments. Groundwater levels approach the surface near the Ruby River resulting in sufficient groundwater discharge to maintain stream flow during dry, late summer conditions. The resulting classification data sets provide watershed managers with a standardized organizational tool that represents groundwater conditions at the watershed scale.展开更多
In arid and semi-arid regions, the availability of adequate water of appropriate quality has become a limiting factor for development. This paper aims to evaluate the potential for rainwater harvesting in the arid to ...In arid and semi-arid regions, the availability of adequate water of appropriate quality has become a limiting factor for development. This paper aims to evaluate the potential for rainwater harvesting in the arid to semi-arid Faria Catchment, in the West Bank, Palestine. Under current conditions, the supply-demand gap is increasing due to the increasing water demands of a growing population with hydrologically limited and uncertain supplies. By 2015, the gap is estimated to reach 4.5 x 106 m3. This study used the process-oriented and physically-based TRAIN-ZIN model to evaluate two different rainwater harvesting techniques during two rainfall events. The analysis shows that there is a theoretical potential for harvesting an additional 4 x 106 m3 of surface water over the entire catchment. Thus, it is essential to manage the potential available surface water supplies in the catchment to save water for dry periods when the supply-demand gap is comparatively high. Then a valuable contribution to bridging the supply-demand gap can be made.展开更多
Drainage management activities aim at maintaining the performance of drainage networks by assessing the major drainage management problems regarding sedimentation, bank erosion, vegetation, water quality, and biodiver...Drainage management activities aim at maintaining the performance of drainage networks by assessing the major drainage management problems regarding sedimentation, bank erosion, vegetation, water quality, and biodiversity, to find appropriate solutions for channel improvement in order to increase agricultural productivity and maintain agricultural land and the surrounding environment. In this research, we evaluate the drainage management problems to the surface drains Baloza and EL-Farama in the cultivated Tina Plain region (21,000 hectares) North Sinai, Egypt to provide an accurate data to help decision-makers to know the status of maintenance of the watercourses and the need for improvement. For this, Intensive field investigations were carried out regarding a hydrographic survey of the actual drains cross-section using total station and aqua sounder devices, visual stream bank erosion survey, and vegetation survey. In addition, monthly water samples from the drainage water were treated and analyzed for physical and chemical, bacteriological related indices. The results showed, the studied drains suffer from sedimentation, vegetation infection, and bank erosion in some reaches and need remedy. Estimated sedimentation in EL-Farama Drain was 34369 m3/year and in Baloza Drain 29153 m3/year;bank slope failures upstream and downstream pump stations were recorded;the average weed infection ratio for both drains was 30%. The results of water quality parameters showed acceptable concentrations for BOD, DO, NO3, and total coliform according to Egypt decree, 92/2013 for the protection of the Nile River and its waterways from pollution, except TDS (more than 10,000 mg/L). The drainage water was classified as high saline and it was unacceptable for irrigation. Therefore, the author recommends to remove sedimentation and vegetation every 2 years by mechanical methods, applying gabions lining to prevent bank erosion, and treating drainage water using wetland system and utilizing the treated wastewater in fish farming.展开更多
As an efficient method for ammonium(NH4~+)removal,contact catalytic oxidation technology has drawn much attention recently,due to its good low temperature resistance and short start-up period.Two identical filters ...As an efficient method for ammonium(NH4~+)removal,contact catalytic oxidation technology has drawn much attention recently,due to its good low temperature resistance and short start-up period.Two identical filters were employed to compare the process for ammonium removal during the start-up period for ammonium removal in groundwater(Filter-N)and surface water(Filter-S)treatment.Two types of source water(groundwater and surface water)were used as the feed waters for the filtration trials.Although the same initiating method was used,Filter-N exhibited much better ammonium removal performance than Filter-S.The differences in catalytic activity among these two filters were probed using X-ray diffraction(XRD),scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),and compositional analysis.XRD results indicated that different manganese oxide species were formed in Filter-N and Filter-S.Furthermore,the Mn3p XPS spectra taken on the surface of the filter films revealed that the average manganese valence of the inactive manganese oxide film collected from Filter-S(FS-MnOx)was higher than in the film collected from Filter-N(FN-MnOx).Mn(IV)was identified as the predominant oxidation state in FS-MnOxand Mn(III)was identified as the predominant oxidation state in FN-MnOx.The results of compositional analyses suggested that polyaluminum ferric chloride(PAFC)used during the surface water treatment was an important factor in the mineralogy and reactivity of MnOx.This study provides the theoretical basis for promoting the wide application of the technology and has great practical significance.展开更多
Xiangxi River Basin, located in western Hubei Province in central China, is a karst ridge-trough area with an inhomogeneous and complicated distribution of water resources. This paper compares the characteristics of s...Xiangxi River Basin, located in western Hubei Province in central China, is a karst ridge-trough area with an inhomogeneous and complicated distribution of water resources. This paper compares the characteristics of surface and subsurface floods in this karst basin, utilizing a one-parameter Darcian model and the traditional exponential model. The observed hydrographs and inferred water components are strikingly similar for surface and subsurface floods. The Darcian model and the exponential model are based on different views of the flood generation process, with the former fitting the entire hydrograph with a single time constant, and the latter fitting only the recession limb with multiple time constants. Due to the anisotropy and heterogeneity of karst media, a combination of physical and chemical techniques including the use of 3S(remote sensing, geographical information system, global positioning system) method is proposed for an enhanced hydrological investigation to assess and characterize karst water resources in mountainous areas.展开更多
The water content of proton exchange membrane fuel cells(PEMFCs)affects the transport of reactants and the conductivity of the membrane.Effective water management measures can improve the performance and extend the li...The water content of proton exchange membrane fuel cells(PEMFCs)affects the transport of reactants and the conductivity of the membrane.Effective water management measures can improve the performance and extend the lifespan of the fuel cell.The water management state of the stack is influenced by various external operating conditions,and optimizing the combination of these conditions can improve the water management state within the stack.Considering that the stack's internal resistance can reflect its water management state,this study first establishes an internal resistance-operating condition model that considers the coupling effect of temperature and humidity to determine the variation trend of total resistance and stack humidity with single-factor operating conditions.Subsequently,the water management state optimization method based on the ANN-HGPSO algorithm is proposed,which not only quantitatively evaluates the influence weights of different operating conditions on the stack's internal resistance but also efficiently and accurately obtains the optimal combination of five operating conditions:working temperature,anode gas pressure,cathode gas pressure,anode gas humidity,and cathode gas humidity to achieve the optimal water management state in the stack,within the entire range of current densities.Finally,the response surface experimental results of the stack also validate the effectiveness and accuracy of the ANN-HGPSO algorithm.The method mentioned in this article can provide effective strategies for efficient water management and output performance optimization control of PEMFC stacks.展开更多
文摘Manure management is an essential component of dairy production. Nutrient-laden, field-applied dairy manure often serves as a fertilizer source, but can also pose environmental threats if not properly managed. The Haak dairy farm, located in Decatur, Arkansas, was granted a permit by the Arkansas Department of Environmental Quality (ADEQ) to employ a unique method in treating and storing cattle manure generated during the milking process. This method includes minimizing water use in wash water, dry scraping solids to combine with sawdust for composting and pumping effluent underground into a sloped concrete basin that serves as secondary solid separator before transporting the manure effluent into an interception trench and an adjacent grassed field to facilitate manure nutrient uptake and retention. The Arkansas Discovery Farm program (ADF) is conducting research to evaluate the environmental performance of the dairy’s milk center wash water treatment system (MCWW) by statistical analysis, characterization of phosphorus (P) migration in soil downslope from the inception trench, temperature measurements, and nutrient analysis of a stored dry stack manure/sawdust mixture. Goals included determining possible composting effectiveness along with comparisons to untreated dairy manure and quantifying the use of on-farm water. Results from this research demonstrated that: 1) The MCWW was effective at retaining manure-derived nutrients and reducing field nutrient migration as the MCWW interception trench had significantly higher total nitrogen (TN) (804.2 to 4.1), total phosphorus (TP) (135.6 to 1.5), and water extractable phosphorus (WEP) (55.0 to 1.0) concentrations in milligrams per liter (mg⋅L<sup>-1</sup>) than the downhill freshwater pond respectively;2) temperature readings of the manure dry stack indicated heightened levels of microbial and thermal activity, but did not reach a standard composting temperature of 54°C;3) manure dry stack nutrient content was typically higher than untreated dairy manure when measured on a “dry basis” in ppm, but was lower on an “as is basis” in ppm and kg/metric ton;and 4) water meter readings showed that the greatest use of on-farm water was for farm-wide cattle drinking (18.77), followed by water used in the milking center (3.45) and then followed by human usage (0.02) measured in cubic meters per day (m<sup>3</sup>⋅d<sup>-1</sup>). These results demonstrate that practical innovations in agricultural engineering and environmental science, such as the Haak dairy’s manure treatment system, can effectively reduce environmental hazards that accompany the management of manure at this dairy operation.
文摘In the purpose of defining typical urban water management challenges in coastal lowlands in the context of global climate change, a comparative study was conducted between two coastal new towns respectively located in the Netherlands and Northern China. Comparative method is applied to define main functioning patterns of urban water systems in the two cases, then computer simulations were used to furthercompare drainage capacity in order to reveal the trends of urban water management. Major resulthas shown that Almere in the Netherlands generally more advanced in urban water management asmultiple functioning patterns are available.Strong dykes maintain competence for land subsidence and sea level rise. Open water system decreases local runoff and increaseswater retention level. Systematic control ofsluicesand locks which serve for shipping and waterfront landscaping are simultaneously isolating contaminants from outer water body. Tianjin Eco-city in China has shown both strengths and weaknesses. It takes large amount of reclaimed water as main landscaping water source, which adapts to local water pollution and shortage while requires highly centralized facilities. Large water body is reserved and huge scale underground drainage system built, but it is still vulnerable to heavy storms due to the lack of efficient surface water drainage system. Coastal line control does not adequately prevent from increasing storm surge risks in the future. SWMMsimulations have supported the viewpoint ofdistributed surface water with a higher efficiency for storm drainage. Meanwhile, surface water system returns more added values to urban development. The study is corresponding well with the theory of water sensitive city. As a conclusion, urban water system should always incorporate methods to achieve higher system resilience based on multiple functioning patterns.
文摘The development of oasis along the edge of the Tengerli Desert, where underground water is available, is one of the major strategies to reallocate 'ecological refuges' from their seriously degraded grasslands to agriculturally cultivable land. Yet, underground water resources, the major constraint, hate not been fully integrated in the development process. Therefore, the decline of water resources and deterioration of water quality caused by over-consumption of water resources has begun to hinder further development and has even fed to the abandonment of some oasis. A system dynamics modeling approach is applied to analyze the water use and water management structures in Yaoba Oasis as a case study. The study attempts to identify the characteristics of major feedback loops, which dominate the over-use of underground water resources leading to the deterioration of water resources in quantity and quality.
文摘The use of pelletized poultry litter (PPL) as a substitute for inorganic fertilizers is increasingly being en-couraged in states like Delaware which have a considerable surplus of poultry litter. However, we know very little about the impacts of PPL on runoff water quality and whether it is an environmentally-sound and sus-tainable alternative to inorganic fertilizer. To address these questions we compared the exports of nutrients (NH4-N, NO3-N and PO4-P) and trace elements (As, Cu, and Zn) in surface runoff from agricultural plots receiving PPL, raw poultry litter (RPL), urea and no-fertilizer (control) treatments. The study was conducted on agricultural land located in Middletown, Delaware with corn as the cover crop. The experimental plots were 5 m wide and 12 m long with reduced tillage and no-tillage management practices. Sampling was con-ducted for six natural rainfall events from April through August 2008. Nutrient (NH4-N, NO3-N and PO4-P) exports from plots receiving PPL were less than those with urea or raw litter applications. While exports of trace elements from the PPL treatment exceeded those from urea, they were much lower than the corre-sponding exports from the RPL treatments. Mass exports of nutrients and trace elements were correlated with event size (rainfall amount) but were not correlated with timing of event (days since litter application). Results from this study suggest that the use of PPL in combination with no-tillage may provide an environ-mentally safe alternative to synthetic fertilizers.
文摘The article deals with modeling the tailing ponds influence on water resources. New technology using hydrocyclons of new design has been offered for additional purification of gold dressing mill wastewater. Laboratory and plant test have determined the optimal parameters of hydrocyclon. Introduction of new technology into system of water supply will prevent environment pollution and make it possible to process recoverable resources.
文摘This research is concerned with new developments and practical applications of a physically-based numerical model that incorporates new approaches for a finite elements solution to the steady/transient problems of the joint ground/surface water flows. Python scripts are implemented in Geographic Information System (GIS) to store, represent and take decisions on the simulated conditions related to the water resources management at the scale of the watershed. The proposed surface-subsurface model considers surface and groundwater interactions to be 2-D horizontally distributed and depth-averaged through a diffusive wave approach for surface flood routing. Infiltration rates, overland flows and evapotranspiration processes are considered by a diffuse discharge from surface water, non-saturated subsoil and groundwater table. Recent developments also allow for the management of surface water flow control through the capacity of diversion on river beds, spillways and outflow operations of floodgates in weirs and dams of reservoirs. Practical application regards the actual hydrology of the Mero River watershed, with two important water bodies mainly concerned with the water resources management at the Cecebre Reservoir and the present flooding of a deep coal mining excavation. The MELEF model (Modèle d’éLéments Fluides, in French) was adapted and calibrated during a period of five years (2008/ 2012) with the help of hydrological parameters, registered flow rates, water levels and registered precipitation, water uses and water management operations in surface and groundwater bodies. The results predict the likely evolution of the Cecebre Reservoir, the flow rates in rivers, the flooding of the Meirama open pit and the local water balances for different hydrological components.
文摘Classification of groundwater conditions at the watershed scale synthesizes landscape hydrology, provides a mapped summary of groundwater resources, and supports water management decisions. The application of a recently developed watershed-scale groundwater classification methodology is applied and evaluated in the 100,000 hectare lower Ruby Valley watershed of southwestern Montana. The geologic setting, groundwater flow direction, aquifer productivity, water quality, anthropogenic impact to water levels, depth to groundwater, and the degree of connection between groundwater and surface water are key components of the classification scheme. This work describes the hydrogeology of the lower Ruby Valley watershed and illustrates how the classification system is applied to assemble, analyze, and summarize groundwater data. The classification process provides information in summary tables and maps of seamless digital overlays prepared using geographical information system (GIS) software. Groundwater conditions in the watershed are classified as low production bedrock aquifers in the mountainous uplands that recharge the moderate productivity basin-fill sediments. Groundwater levels approach the surface near the Ruby River resulting in sufficient groundwater discharge to maintain stream flow during dry, late summer conditions. The resulting classification data sets provide watershed managers with a standardized organizational tool that represents groundwater conditions at the watershed scale.
基金supported by the GLOWA-JR Project of the German Federal Ministry of Education and Research (BMBF)
文摘In arid and semi-arid regions, the availability of adequate water of appropriate quality has become a limiting factor for development. This paper aims to evaluate the potential for rainwater harvesting in the arid to semi-arid Faria Catchment, in the West Bank, Palestine. Under current conditions, the supply-demand gap is increasing due to the increasing water demands of a growing population with hydrologically limited and uncertain supplies. By 2015, the gap is estimated to reach 4.5 x 106 m3. This study used the process-oriented and physically-based TRAIN-ZIN model to evaluate two different rainwater harvesting techniques during two rainfall events. The analysis shows that there is a theoretical potential for harvesting an additional 4 x 106 m3 of surface water over the entire catchment. Thus, it is essential to manage the potential available surface water supplies in the catchment to save water for dry periods when the supply-demand gap is comparatively high. Then a valuable contribution to bridging the supply-demand gap can be made.
文摘Drainage management activities aim at maintaining the performance of drainage networks by assessing the major drainage management problems regarding sedimentation, bank erosion, vegetation, water quality, and biodiversity, to find appropriate solutions for channel improvement in order to increase agricultural productivity and maintain agricultural land and the surrounding environment. In this research, we evaluate the drainage management problems to the surface drains Baloza and EL-Farama in the cultivated Tina Plain region (21,000 hectares) North Sinai, Egypt to provide an accurate data to help decision-makers to know the status of maintenance of the watercourses and the need for improvement. For this, Intensive field investigations were carried out regarding a hydrographic survey of the actual drains cross-section using total station and aqua sounder devices, visual stream bank erosion survey, and vegetation survey. In addition, monthly water samples from the drainage water were treated and analyzed for physical and chemical, bacteriological related indices. The results showed, the studied drains suffer from sedimentation, vegetation infection, and bank erosion in some reaches and need remedy. Estimated sedimentation in EL-Farama Drain was 34369 m3/year and in Baloza Drain 29153 m3/year;bank slope failures upstream and downstream pump stations were recorded;the average weed infection ratio for both drains was 30%. The results of water quality parameters showed acceptable concentrations for BOD, DO, NO3, and total coliform according to Egypt decree, 92/2013 for the protection of the Nile River and its waterways from pollution, except TDS (more than 10,000 mg/L). The drainage water was classified as high saline and it was unacceptable for irrigation. Therefore, the author recommends to remove sedimentation and vegetation every 2 years by mechanical methods, applying gabions lining to prevent bank erosion, and treating drainage water using wetland system and utilizing the treated wastewater in fish farming.
基金supported by the National Key Research and Development Program of China (No. 2016YFC0400706)the National Natural Science Foundation of China (Nos. 51278409, 51608431, 51408469)the Key Laboratory of Education Department of Shaanxi province (Nos. 15JS046, 16JS060)
文摘As an efficient method for ammonium(NH4~+)removal,contact catalytic oxidation technology has drawn much attention recently,due to its good low temperature resistance and short start-up period.Two identical filters were employed to compare the process for ammonium removal during the start-up period for ammonium removal in groundwater(Filter-N)and surface water(Filter-S)treatment.Two types of source water(groundwater and surface water)were used as the feed waters for the filtration trials.Although the same initiating method was used,Filter-N exhibited much better ammonium removal performance than Filter-S.The differences in catalytic activity among these two filters were probed using X-ray diffraction(XRD),scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),and compositional analysis.XRD results indicated that different manganese oxide species were formed in Filter-N and Filter-S.Furthermore,the Mn3p XPS spectra taken on the surface of the filter films revealed that the average manganese valence of the inactive manganese oxide film collected from Filter-S(FS-MnOx)was higher than in the film collected from Filter-N(FN-MnOx).Mn(IV)was identified as the predominant oxidation state in FS-MnOxand Mn(III)was identified as the predominant oxidation state in FN-MnOx.The results of compositional analyses suggested that polyaluminum ferric chloride(PAFC)used during the surface water treatment was an important factor in the mineralogy and reactivity of MnOx.This study provides the theoretical basis for promoting the wide application of the technology and has great practical significance.
基金supported by the China Geological Survey (No. 12120113103800)
文摘Xiangxi River Basin, located in western Hubei Province in central China, is a karst ridge-trough area with an inhomogeneous and complicated distribution of water resources. This paper compares the characteristics of surface and subsurface floods in this karst basin, utilizing a one-parameter Darcian model and the traditional exponential model. The observed hydrographs and inferred water components are strikingly similar for surface and subsurface floods. The Darcian model and the exponential model are based on different views of the flood generation process, with the former fitting the entire hydrograph with a single time constant, and the latter fitting only the recession limb with multiple time constants. Due to the anisotropy and heterogeneity of karst media, a combination of physical and chemical techniques including the use of 3S(remote sensing, geographical information system, global positioning system) method is proposed for an enhanced hydrological investigation to assess and characterize karst water resources in mountainous areas.
基金supported by the National Key Research and Devel-opment Project of China(2020YFB1506802)the Key Research and Development Project of Guangdong Province(2020B0909040004).
文摘The water content of proton exchange membrane fuel cells(PEMFCs)affects the transport of reactants and the conductivity of the membrane.Effective water management measures can improve the performance and extend the lifespan of the fuel cell.The water management state of the stack is influenced by various external operating conditions,and optimizing the combination of these conditions can improve the water management state within the stack.Considering that the stack's internal resistance can reflect its water management state,this study first establishes an internal resistance-operating condition model that considers the coupling effect of temperature and humidity to determine the variation trend of total resistance and stack humidity with single-factor operating conditions.Subsequently,the water management state optimization method based on the ANN-HGPSO algorithm is proposed,which not only quantitatively evaluates the influence weights of different operating conditions on the stack's internal resistance but also efficiently and accurately obtains the optimal combination of five operating conditions:working temperature,anode gas pressure,cathode gas pressure,anode gas humidity,and cathode gas humidity to achieve the optimal water management state in the stack,within the entire range of current densities.Finally,the response surface experimental results of the stack also validate the effectiveness and accuracy of the ANN-HGPSO algorithm.The method mentioned in this article can provide effective strategies for efficient water management and output performance optimization control of PEMFC stacks.