The land-atmosphere energy and turbulence exchange is key to understanding land surface processes on the Tibetan Plateau(TP). Using observed data for Aug. 4 to Dec. 3, 2012 from the Bujiao observation point(BJ) of the...The land-atmosphere energy and turbulence exchange is key to understanding land surface processes on the Tibetan Plateau(TP). Using observed data for Aug. 4 to Dec. 3, 2012 from the Bujiao observation point(BJ) of the Nagqu Plateau Climate and Environment Station(NPCE-BJ), different characteristics of the energy flux during the Asian summer monsoon(ASM) season and post-monsoon period were analyzed. This study outlines the impact of the ASM on energy fluxes in the central TP. It also demonstrates that the surface energy closure rate during the ASM season is higher than that of the post-monsoon period. Footprint modeling shows the distribution of data quality assessments(QA) and quality controls(QC) surrounding the observation point. The measured turbulent flux data at the NPCE-BJ site were highly representative of the target land-use type. The target surface contributed more to the fluxes under unstable conditions than under stable conditions. The main wind directions(180° and 210°) with the highest data density showed flux contributions reaching 100%, even under stable conditions. The lowest flux contributions were found in sectors with low data density, e.g., 90.4% in the 360° sector under stable conditions during the ASM season. Lastly, a surface energy water balance(SEWAB) model was used to gap-fill any absent or corrected turbulence data. The potential simulation error was also explored in this study. The Nash-Sutcliffe model efficiency coefficients(NSEs) of the observed fluxes with the SEWAB model runs were 0.78 for sensible heat flux and 0.63 for latent heat flux during the ASM season, but unrealistic values of-0.9 for latent heat flux during the post-monsoon period.展开更多
As root water uptake(RWU)is an important link in the water and heat exchange between plants and ambient air,improving its parameterization is key to enhancing the performance of land surface model simulations.Althou...As root water uptake(RWU)is an important link in the water and heat exchange between plants and ambient air,improving its parameterization is key to enhancing the performance of land surface model simulations.Although different types of RWU functions have been adopted in land surface models,there is no evidence as to which scheme most applicable to maize farmland ecosystems.Based on the 2007–09 data collected at the farmland ecosystem field station in Jinzhou,the RWU function in the Common Land Model(Co LM)was optimized with scheme options in light of factors determining whether roots absorb water from a certain soil layer(W_x)and whether the baseline cumulative root efficiency required for maximum plant transpiration(W_c)is reached.The sensibility of the parameters of the optimization scheme was investigated,and then the effects of the optimized RWU function on water and heat flux simulation were evaluated.The results indicate that the model simulation was not sensitive to W_x but was significantly impacted by W_c.With the original model,soil humidity was somewhat underestimated for precipitation-free days;soil temperature was simulated with obvious interannual and seasonal differences and remarkable underestimations for the maize late-growth stage;and sensible and latent heat fluxes were overestimated and underestimated,respectively,for years with relatively less precipitation,and both were simulated with high accuracy for years with relatively more precipitation.The optimized RWU process resulted in a significant improvement of Co LM’s performance in simulating soil humidity,temperature,sensible heat,and latent heat,for dry years.In conclusion,the optimized RWU scheme available for the Co LM model is applicable to the simulation of water and heat flux for maize farmland ecosystems in arid areas.展开更多
A 3- D free surface flow in open channels based on the Reynolds equations with the k-ε turbulence closure model is presented in this paper. Insted of the 'rigid lid' approximation, the solution of the free su...A 3- D free surface flow in open channels based on the Reynolds equations with the k-ε turbulence closure model is presented in this paper. Insted of the 'rigid lid' approximation, the solution of the free surface equation is implemented in the velocity-pressure iterative procedure on the basis of the conventional SIMPLE method. This model was used to compute the flow in rectangular channels with trenches dredged across the bottom. The velocity, eddy viscosity coefficient, turbulent shear stress, turbulent kinetic energy and elevation of the free surface can be obtained. The computed results are in good agreement with previous experimental data.展开更多
A three dimensional numerical model based on the Reynolds equations is presented that can be used to predict the surface water flow in open channels.The model uses a computational mesh that conforms to the free water ...A three dimensional numerical model based on the Reynolds equations is presented that can be used to predict the surface water flow in open channels.The model uses a computational mesh that conforms to the free water sur- face and the bottom of the channel so that the accuracy of boundary condition application,code complexity,and e- conomy could be enhanced.The k-ε turbulence model is used to estimate the eddy viscosity coefficient.Instead of using the“rigid-lid”approximation a 2-D equation derived from integrating the continuity equation over the total depth is adopted to determine the elevation of the free water surface.A new algorithm is presented based on the conventional SIMPLE procedure.The block correction technique is employed to enhance rate of convergence. The model presented is applied to a bottom discharge into a rectangular straight channel for three dimensional phenomena to obtain the free water surface configuration,velocities and pressure.The computed results are in good agreement with the previous experimental values.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 91337212, 41175008)Cold and Arid Regions Environmental and Engineering Research Institute Youth Science Technology Service Network initiative (STS)+1 种基金the China Exchange Project (Grant No. 13CDP007)the National Natural Science Foundation of China (Grant Nos. 40825015 and 40675012)
文摘The land-atmosphere energy and turbulence exchange is key to understanding land surface processes on the Tibetan Plateau(TP). Using observed data for Aug. 4 to Dec. 3, 2012 from the Bujiao observation point(BJ) of the Nagqu Plateau Climate and Environment Station(NPCE-BJ), different characteristics of the energy flux during the Asian summer monsoon(ASM) season and post-monsoon period were analyzed. This study outlines the impact of the ASM on energy fluxes in the central TP. It also demonstrates that the surface energy closure rate during the ASM season is higher than that of the post-monsoon period. Footprint modeling shows the distribution of data quality assessments(QA) and quality controls(QC) surrounding the observation point. The measured turbulent flux data at the NPCE-BJ site were highly representative of the target land-use type. The target surface contributed more to the fluxes under unstable conditions than under stable conditions. The main wind directions(180° and 210°) with the highest data density showed flux contributions reaching 100%, even under stable conditions. The lowest flux contributions were found in sectors with low data density, e.g., 90.4% in the 360° sector under stable conditions during the ASM season. Lastly, a surface energy water balance(SEWAB) model was used to gap-fill any absent or corrected turbulence data. The potential simulation error was also explored in this study. The Nash-Sutcliffe model efficiency coefficients(NSEs) of the observed fluxes with the SEWAB model runs were 0.78 for sensible heat flux and 0.63 for latent heat flux during the ASM season, but unrealistic values of-0.9 for latent heat flux during the post-monsoon period.
基金Supported by the National Natural Science Foundation of China(41305058)Cultivation Plan for Young Agricultural Science and Technology Talents of Liaoning Province(2015060 and 2014060)Key Agricultural Science and Industrialization Project of the Science and Technology Department of Liaoning Province(2014210003)
文摘As root water uptake(RWU)is an important link in the water and heat exchange between plants and ambient air,improving its parameterization is key to enhancing the performance of land surface model simulations.Although different types of RWU functions have been adopted in land surface models,there is no evidence as to which scheme most applicable to maize farmland ecosystems.Based on the 2007–09 data collected at the farmland ecosystem field station in Jinzhou,the RWU function in the Common Land Model(Co LM)was optimized with scheme options in light of factors determining whether roots absorb water from a certain soil layer(W_x)and whether the baseline cumulative root efficiency required for maximum plant transpiration(W_c)is reached.The sensibility of the parameters of the optimization scheme was investigated,and then the effects of the optimized RWU function on water and heat flux simulation were evaluated.The results indicate that the model simulation was not sensitive to W_x but was significantly impacted by W_c.With the original model,soil humidity was somewhat underestimated for precipitation-free days;soil temperature was simulated with obvious interannual and seasonal differences and remarkable underestimations for the maize late-growth stage;and sensible and latent heat fluxes were overestimated and underestimated,respectively,for years with relatively less precipitation,and both were simulated with high accuracy for years with relatively more precipitation.The optimized RWU process resulted in a significant improvement of Co LM’s performance in simulating soil humidity,temperature,sensible heat,and latent heat,for dry years.In conclusion,the optimized RWU scheme available for the Co LM model is applicable to the simulation of water and heat flux for maize farmland ecosystems in arid areas.
文摘A 3- D free surface flow in open channels based on the Reynolds equations with the k-ε turbulence closure model is presented in this paper. Insted of the 'rigid lid' approximation, the solution of the free surface equation is implemented in the velocity-pressure iterative procedure on the basis of the conventional SIMPLE method. This model was used to compute the flow in rectangular channels with trenches dredged across the bottom. The velocity, eddy viscosity coefficient, turbulent shear stress, turbulent kinetic energy and elevation of the free surface can be obtained. The computed results are in good agreement with previous experimental data.
基金This work is supported by Chinese National Natural Science Foundation.
文摘A three dimensional numerical model based on the Reynolds equations is presented that can be used to predict the surface water flow in open channels.The model uses a computational mesh that conforms to the free water sur- face and the bottom of the channel so that the accuracy of boundary condition application,code complexity,and e- conomy could be enhanced.The k-ε turbulence model is used to estimate the eddy viscosity coefficient.Instead of using the“rigid-lid”approximation a 2-D equation derived from integrating the continuity equation over the total depth is adopted to determine the elevation of the free water surface.A new algorithm is presented based on the conventional SIMPLE procedure.The block correction technique is employed to enhance rate of convergence. The model presented is applied to a bottom discharge into a rectangular straight channel for three dimensional phenomena to obtain the free water surface configuration,velocities and pressure.The computed results are in good agreement with the previous experimental values.