期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
The influence of substrate and atmosphere on the properties of FeSiB(Cu,Nb) alloy melts 被引量:2
1
作者 GAO Hui DONG BangShao +3 位作者 ZHONG Ju LI ZongZhen XU Min ZHOU ShaoXiong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第12期1892-1898,共7页
The surface tensions and contact angles of Fe_(78)Si_9B_(13) and Fe_(73.5)Cu_1Nb_3Si_(13.5)B_9 alloy melts were studied as a function of temperature in various atmospheres(vacuum, Ar and N_2 gas) and on different subs... The surface tensions and contact angles of Fe_(78)Si_9B_(13) and Fe_(73.5)Cu_1Nb_3Si_(13.5)B_9 alloy melts were studied as a function of temperature in various atmospheres(vacuum, Ar and N_2 gas) and on different substrates(Si C, Al_2O_3 and BN). It is indicated that Si_3N_4, NbN, Fe_2 Al B and B_(13)C_2 are generated as new phases at the interface between the melt and substrate, and reactive wetting behaviour exists during the heating process. The surface tensions of two alloy melts on BN substrate both firstly decrease and then increase along with increasing temperature, leading to V-shaped surface tension versus temperature, which results from atomic diffusion effects in the surface layer during the oxidation of BN and formation of C-rich layer. Comparably, the surface tensions on Al_2O_3 and Si C substrates decrease with increasing temperature throughout the entire temperature range. Among three substrates, BN exhibits the mildest wetting behaviour. The vacuum environment has the strongest protective effect on melt stability among the tested atmospheres. These findings enrich our knowledge about the effects of the substrate and atmosphere on Fe-based alloy melts at a high temperature, and provide theoretical reference for designing jet nozzles in melt-spinning techniques. 展开更多
关键词 Fe-based alloy melt surface tension contact angle reactive wetting behaviour surface composition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部