Attenuated total reflection surface-enhanced infrared absorption spectroscopy(ATR-SEIRAS)has recently been proven to be a powerful tool for bioanalysis.It enables in situ and in real-time observation of dynamic proces...Attenuated total reflection surface-enhanced infrared absorption spectroscopy(ATR-SEIRAS)has recently been proven to be a powerful tool for bioanalysis.It enables in situ and in real-time observation of dynamic processes occurring on specific interface,revealing rich structural and functional information of biomolecules at sub monolayer level.The aim of this general review was to give an overview of the cutting edge applications of ATRSEIRAS.We start with description of the basic configuration of the standard ATR-SEIRAS platform.The enhanced mechanisms and methods to fabricate enhanced substrates are then presented.We discuss the recent developments,challenges and applications of ATR-SEIRAS in bioanalysis,mainly focusing on DNA analysis,protein behavior and cell properties.Finally,further development of the ATRSEIRAS technique with enhanced sensitivity,improved time and spatial resolutions will be prospected.展开更多
Hydrogen production by water reduction reactions has received considerable attention because hydrogen is considered a clean-energy carrier,key for a sustainable energy future.Computational methods have been widely use...Hydrogen production by water reduction reactions has received considerable attention because hydrogen is considered a clean-energy carrier,key for a sustainable energy future.Computational methods have been widely used to study the reaction mechanism of the hydrogen evolution reaction(HER),but the calculation results need to be supported by experimental results and direct evidence to confirm the mechanistic insights.In this review,we discuss the fundamental principles of the in situ spectroscopic strategy and a theoretical model for a mechanistic understanding of the HER.In addition,we investigate recent studies by in situ Fourier transform infrared(FTIR),Raman spectroscopy,and X-ray absorption spectroscopy(XAS) and cover new findings that occur at the catalyst-electrolyte interface during HER.These spectroscopic strategies provide practical ways to elucidate catalyst phase,reaction intermediate,catalyst-electrolyte interface,intermediate binding energy,metal valency state,and coordination environment during HER.展开更多
A CO_2 infrared remote sensing system based on the algorithm of weighting function modified differential optical absorption spectroscopy(WFM-DOAS) is developed for measuring CO_2 emissions from pollution sources. The ...A CO_2 infrared remote sensing system based on the algorithm of weighting function modified differential optical absorption spectroscopy(WFM-DOAS) is developed for measuring CO_2 emissions from pollution sources. The system is composed of a spectrometer with band from 900 nm to 1700 nm, a telescope with a field of view of 1.12?, a silica optical fiber, an automatic position adjuster, and the data acquisition and processing module. The performance is discussed,including the electronic noise of the charge-coupled device(CCD), the spectral shift, and detection limits. The resolution of the spectrometer is 0.4 nm, the detection limit is 8.5 × 10^(20)molecules·cm^(-2), and the relative retrieval error is < 1.5%.On May 26, 2018, a field experiment was performed to measure CO_2 emissions from the Feng-tai power plant, and a twodimensional distribution of CO_2 from the plume was obtained. The retrieved differential slant column densities(dSCDs)of CO_2 are around 2 × 10^(21) molecules·cm^(-2) in the unpolluted areas, 5.5 × 10^(21)molecules·cm^(-2) in the plume locations most strongly affected by local CO_2 emissions, and the fitting error is less than 2 × 10^(20)molecules·cm^(-2), which proves that the infrared remote sensing system has the characteristics of fast response and high precision, suitable for measuring CO_2 emission from the sources.展开更多
In this study, a lipid membrane was fabricated by fusing cardiolipin-phosphatidylcholine(CL_PC, 1:4) vesicles onto a hydrophobic surface of 1-dodecanethiol(DT) preadsorbed on a nanostructured gold film. By changi...In this study, a lipid membrane was fabricated by fusing cardiolipin-phosphatidylcholine(CL_PC, 1:4) vesicles onto a hydrophobic surface of 1-dodecanethiol(DT) preadsorbed on a nanostructured gold film. By changing the concentration of the DT adsorption solution, we constructed a series of CL PC-DT bilayers with different hydrophobicity to study the effects of lipid membrane characteristics on the adsorption conformation of cytochrome c(Cyt c). Electrochemical analysis showed that the formal potential is 0.24 V for Cyt c-CL_PC-DT(10), 0.2 V for Cyt c-CL_PC-DT(20), and 0.16 V for Cyt c-CL_PC-DT(40) — a gradual positive shift with the decreasing DT concentration — relative to the potential of native cyt c(0.02 V). Potential-induced surface-enhanced infrared adsorption difference spectroscopy revealed that the gradual positive shift of the formal potential of CL-bound cyt c is determined by the environment with the gradually lowered dielectric constant for the heme cofactor in CL-bound cyt c(Fe^3+).展开更多
Electrocatalysis offers a promising approach towards chemical synthesis driven by renewable energy.Molecular level understanding of the electrochemical interface remains challenging due to its compositional and struct...Electrocatalysis offers a promising approach towards chemical synthesis driven by renewable energy.Molecular level understanding of the electrochemical interface remains challenging due to its compositional and structural complexity.In situ interfacial specific characterization techniques could help uncover structure-function relationships and reaction mechanism.To this end,electrochemical surface-enhanced Raman spectroscopy(SERS)and surface-enhanced infrared absorption spectroscopy(SEIRAS)thrive as powerful techniques to provide fingerprint information of interfacial species at reaction conditions.In this review,we first introduce the fundamentals of SERS and SEIRAS,followed by discussion regarding the technical challenges and potential solutions.Finally,we highlight future directions for further development of surface-enhanced spectroscopic techniques for electrocatalytic studies.展开更多
N-doped FZ-Si crystals and N-doped NTD FZ-Si crystals and their annealing behavior have been studied by IR spectrum. Two models of nitrogen configuration, nearly substitutional nitrogen and interstitial nitrogen pair,...N-doped FZ-Si crystals and N-doped NTD FZ-Si crystals and their annealing behavior have been studied by IR spectrum. Two models of nitrogen configuration, nearly substitutional nitrogen and interstitial nitrogen pair, have been proposed and two nitrogen-related IR absorption peaks at 767cm-1 and 963cm-1 have been well explained.展开更多
Mid-infrared antennas(MIRAs)support highly-efficient optical resonance in the infrared,enabling multiple applications,such as surface-enhanced infrared absorption(SEIRA)spectroscopy and ultrasensitive mid-infrared det...Mid-infrared antennas(MIRAs)support highly-efficient optical resonance in the infrared,enabling multiple applications,such as surface-enhanced infrared absorption(SEIRA)spectroscopy and ultrasensitive mid-infrared detection.However,most MIRAs such as dipolar-antenna structures support only narrow-band dipolar-mode resonances while high-order modes are usually too weak to be observed,severely limiting other useful applications that broadband resonances make possible.In this study,we report a multiscale nanobridged rhombic antenna(NBRA)that supports two dominant reson-ances in the MIR,including a charge-transfer plasmon(CTP)band and a bridged dipolar plasmon(BDP)band which looks like a quadruple resonance.These assignments are evidenced by scattering-type scanning near-field optical micro-scopy(s-SNOM)imaging and electromagnetic simulations.The high-order mode only occurs with nanometer-sized bridge(nanobridge)linked to the one end of the rhombic arm which mainly acts as the inductance and the resistance by the circuit analysis.Moreover,the main hotspots associated with the two resonant bands are spatially superimposed,en-abling boosting up the local field for both bands by multiscale coupling.With large field enhancements,multiband detec-tion with high sensitivity to a monolayer of molecules is achieved when using SEIRA.Our work provides a new strategy possible to activate high-order modes for designing multiband MIRAs with both nanobridges and nanogaps for such MIR applications as multiband SEIRAs,IR detectors,and beam-shaping of quantum cascade lasers in the future.展开更多
A graphene covered on square-ring structure is designed and fabricated to achieve narrow band absorption of three peaks in the infrared band.The absorption rates of graphene/square-ring structures calculated by simula...A graphene covered on square-ring structure is designed and fabricated to achieve narrow band absorption of three peaks in the infrared band.The absorption rates of graphene/square-ring structures calculated by simulation are 90.49%,65.67%and 20.38%,respectively,and the experimentally measured absorption rates are 82.12%,53.13%,and 16.58%,respectively.Comparing the absorption rate of simulation calculation with experimental measurement,as well as the reasons for the differences are presented.The dynamic control characteristics of the graphene device are not observed with this structure in the experiment,which is different from the simulation.We analyzed the reason for this distinction and proposed three solutions based on the experimental design.The research results of this paper provide an important reference to the design and preparation of graphene devices.展开更多
A quantum cascade laser(QCL) based system for simultaneous detection of CO and CO_2 is developed.The QCL can scan over two neighboring CO(2055.40 cm^(-1)) and CO_2(2055.16 cm^(-1)) lines with a single curren...A quantum cascade laser(QCL) based system for simultaneous detection of CO and CO_2 is developed.The QCL can scan over two neighboring CO(2055.40 cm^(-1)) and CO_2(2055.16 cm^(-1)) lines with a single current scan.The wavelength modulation spectroscopy( f = 20 k Hz) is utilized to enhance the signal-to-noise ratio.A white cell with an effective optical path length of 74 m is used.The calibration of the sensor is performed and minimum detection limits of 1.3 ppb(1 × 10^(-9))for CO and 0.44 ppm(1 × 10^(-6)) for CO_2 are achieved.展开更多
基金This work was supported by grants from the National Natural Science Foundation of China(21327902,21635004,21675079,21627806).
文摘Attenuated total reflection surface-enhanced infrared absorption spectroscopy(ATR-SEIRAS)has recently been proven to be a powerful tool for bioanalysis.It enables in situ and in real-time observation of dynamic processes occurring on specific interface,revealing rich structural and functional information of biomolecules at sub monolayer level.The aim of this general review was to give an overview of the cutting edge applications of ATRSEIRAS.We start with description of the basic configuration of the standard ATR-SEIRAS platform.The enhanced mechanisms and methods to fabricate enhanced substrates are then presented.We discuss the recent developments,challenges and applications of ATR-SEIRAS in bioanalysis,mainly focusing on DNA analysis,protein behavior and cell properties.Finally,further development of the ATRSEIRAS technique with enhanced sensitivity,improved time and spatial resolutions will be prospected.
基金the immense support provided by the National Research Foundation of Korea(NRF)Grant funded by the Korean Government(MSIT)(RS-2023–00210114)the National R&D Program through the National Research Foundation of Korea(NRF)funded by Ministry of Science and ICT(2021M3D1A2051636)。
文摘Hydrogen production by water reduction reactions has received considerable attention because hydrogen is considered a clean-energy carrier,key for a sustainable energy future.Computational methods have been widely used to study the reaction mechanism of the hydrogen evolution reaction(HER),but the calculation results need to be supported by experimental results and direct evidence to confirm the mechanistic insights.In this review,we discuss the fundamental principles of the in situ spectroscopic strategy and a theoretical model for a mechanistic understanding of the HER.In addition,we investigate recent studies by in situ Fourier transform infrared(FTIR),Raman spectroscopy,and X-ray absorption spectroscopy(XAS) and cover new findings that occur at the catalyst-electrolyte interface during HER.These spectroscopic strategies provide practical ways to elucidate catalyst phase,reaction intermediate,catalyst-electrolyte interface,intermediate binding energy,metal valency state,and coordination environment during HER.
基金Project supported by the Key Program of the National Natural Science Foundation of China(Grant No.41530644)
文摘A CO_2 infrared remote sensing system based on the algorithm of weighting function modified differential optical absorption spectroscopy(WFM-DOAS) is developed for measuring CO_2 emissions from pollution sources. The system is composed of a spectrometer with band from 900 nm to 1700 nm, a telescope with a field of view of 1.12?, a silica optical fiber, an automatic position adjuster, and the data acquisition and processing module. The performance is discussed,including the electronic noise of the charge-coupled device(CCD), the spectral shift, and detection limits. The resolution of the spectrometer is 0.4 nm, the detection limit is 8.5 × 10^(20)molecules·cm^(-2), and the relative retrieval error is < 1.5%.On May 26, 2018, a field experiment was performed to measure CO_2 emissions from the Feng-tai power plant, and a twodimensional distribution of CO_2 from the plume was obtained. The retrieved differential slant column densities(dSCDs)of CO_2 are around 2 × 10^(21) molecules·cm^(-2) in the unpolluted areas, 5.5 × 10^(21)molecules·cm^(-2) in the plume locations most strongly affected by local CO_2 emissions, and the fitting error is less than 2 × 10^(20)molecules·cm^(-2), which proves that the infrared remote sensing system has the characteristics of fast response and high precision, suitable for measuring CO_2 emission from the sources.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.9122711421322510+4 种基金and 21105097)the China Postdoctoral Science Foundation(Grant No.2013M530998)the Natural Science Foundation of Jilin ProvinceChina(Grant No.201215092)the President Funds of the Chinese Academy of Sciences
文摘In this study, a lipid membrane was fabricated by fusing cardiolipin-phosphatidylcholine(CL_PC, 1:4) vesicles onto a hydrophobic surface of 1-dodecanethiol(DT) preadsorbed on a nanostructured gold film. By changing the concentration of the DT adsorption solution, we constructed a series of CL PC-DT bilayers with different hydrophobicity to study the effects of lipid membrane characteristics on the adsorption conformation of cytochrome c(Cyt c). Electrochemical analysis showed that the formal potential is 0.24 V for Cyt c-CL_PC-DT(10), 0.2 V for Cyt c-CL_PC-DT(20), and 0.16 V for Cyt c-CL_PC-DT(40) — a gradual positive shift with the decreasing DT concentration — relative to the potential of native cyt c(0.02 V). Potential-induced surface-enhanced infrared adsorption difference spectroscopy revealed that the gradual positive shift of the formal potential of CL-bound cyt c is determined by the environment with the gradually lowered dielectric constant for the heme cofactor in CL-bound cyt c(Fe^3+).
文摘Electrocatalysis offers a promising approach towards chemical synthesis driven by renewable energy.Molecular level understanding of the electrochemical interface remains challenging due to its compositional and structural complexity.In situ interfacial specific characterization techniques could help uncover structure-function relationships and reaction mechanism.To this end,electrochemical surface-enhanced Raman spectroscopy(SERS)and surface-enhanced infrared absorption spectroscopy(SEIRAS)thrive as powerful techniques to provide fingerprint information of interfacial species at reaction conditions.In this review,we first introduce the fundamentals of SERS and SEIRAS,followed by discussion regarding the technical challenges and potential solutions.Finally,we highlight future directions for further development of surface-enhanced spectroscopic techniques for electrocatalytic studies.
文摘N-doped FZ-Si crystals and N-doped NTD FZ-Si crystals and their annealing behavior have been studied by IR spectrum. Two models of nitrogen configuration, nearly substitutional nitrogen and interstitial nitrogen pair, have been proposed and two nitrogen-related IR absorption peaks at 767cm-1 and 963cm-1 have been well explained.
文摘Mid-infrared antennas(MIRAs)support highly-efficient optical resonance in the infrared,enabling multiple applications,such as surface-enhanced infrared absorption(SEIRA)spectroscopy and ultrasensitive mid-infrared detection.However,most MIRAs such as dipolar-antenna structures support only narrow-band dipolar-mode resonances while high-order modes are usually too weak to be observed,severely limiting other useful applications that broadband resonances make possible.In this study,we report a multiscale nanobridged rhombic antenna(NBRA)that supports two dominant reson-ances in the MIR,including a charge-transfer plasmon(CTP)band and a bridged dipolar plasmon(BDP)band which looks like a quadruple resonance.These assignments are evidenced by scattering-type scanning near-field optical micro-scopy(s-SNOM)imaging and electromagnetic simulations.The high-order mode only occurs with nanometer-sized bridge(nanobridge)linked to the one end of the rhombic arm which mainly acts as the inductance and the resistance by the circuit analysis.Moreover,the main hotspots associated with the two resonant bands are spatially superimposed,en-abling boosting up the local field for both bands by multiscale coupling.With large field enhancements,multiband detec-tion with high sensitivity to a monolayer of molecules is achieved when using SEIRA.Our work provides a new strategy possible to activate high-order modes for designing multiband MIRAs with both nanobridges and nanogaps for such MIR applications as multiband SEIRAs,IR detectors,and beam-shaping of quantum cascade lasers in the future.
基金supported by the National Natural Science Foundation of China(Grant No.51876049)。
文摘A graphene covered on square-ring structure is designed and fabricated to achieve narrow band absorption of three peaks in the infrared band.The absorption rates of graphene/square-ring structures calculated by simulation are 90.49%,65.67%and 20.38%,respectively,and the experimentally measured absorption rates are 82.12%,53.13%,and 16.58%,respectively.Comparing the absorption rate of simulation calculation with experimental measurement,as well as the reasons for the differences are presented.The dynamic control characteristics of the graphene device are not observed with this structure in the experiment,which is different from the simulation.We analyzed the reason for this distinction and proposed three solutions based on the experimental design.The research results of this paper provide an important reference to the design and preparation of graphene devices.
基金Project supported by the National Key Scientific Instrument and Equipment Development Project of China(Grnat No.2014YQ060537)the National Basic Research Program of China(Grant No.2013CB632803)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA05040102)the National Natural Science Foundation of China(Grant No.41405134)
文摘A quantum cascade laser(QCL) based system for simultaneous detection of CO and CO_2 is developed.The QCL can scan over two neighboring CO(2055.40 cm^(-1)) and CO_2(2055.16 cm^(-1)) lines with a single current scan.The wavelength modulation spectroscopy( f = 20 k Hz) is utilized to enhance the signal-to-noise ratio.A white cell with an effective optical path length of 74 m is used.The calibration of the sensor is performed and minimum detection limits of 1.3 ppb(1 × 10^(-9))for CO and 0.44 ppm(1 × 10^(-6)) for CO_2 are achieved.