期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
NARROW-DISPERSED CROSSLINKED CORE-SHELL POLYMER MICROSPHERES PREPARED BY SURFACE-INITIATED ATOM TRANSFER RADICAL POLYMERIZATION
1
作者 Yu-zengZhao Xin-linYang FengBai 黄文强 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2005年第3期293-299,共7页
Grafting of polystyrene with narrowly dispersed polymer microspheres through surface-initiated atom transferradical polymerization(ATRP)was investigated.Polydivinylbenzene(PDVB)microspheres were prepared by dispersion... Grafting of polystyrene with narrowly dispersed polymer microspheres through surface-initiated atom transferradical polymerization(ATRP)was investigated.Polydivinylbenzene(PDVB)microspheres were prepared by dispersionpolymerization with poly(N-vinyl pyrrolidone)(PVP)as stabilizer.The surfaces of PDVB microspheres werechloromethylated by chloromethyl methyl ether in the presence of zinc chloride as catalyst to form chloromethylbenzeneinitiating core sites for subsequent ATRP grafting of styrene using CuCl/bpy as catalytic system.Polystyrene was found to begrafted not only from the particle surfaces but also from within a thin shell layer,resulting in the formation of particles sizeincreased from 2.38-2.58 μm,which can further grow to 2.93 μm during secondary grafting polymerization of styrene.Thisdemonstrates that grafting polymerization proceeds through a typical ATRP procedure with living nature.All of the preparedmicrospheres have narrow particle size distribution with coefficient of variation around 10%. 展开更多
关键词 Atom transfer radical polymerization(ATRP) Core-shell polymers Grafting polymerization surface-initiated polymerization.
下载PDF
Hydrophilic Modification of Microporous Polysulfone Membrane via Surface-Initiated Atom Transfer Radical Polymerization and Hydrolysis of Poly(glycidylmethacrylate) 被引量:2
2
作者 王超展 赵飒 卫引茂 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2012年第10期2473-2482,共10页
Poly(glycidylmethacrylate) (PGMA) brushes were grafted from chloromethylated polysulfone (CMPSF) mem- brane surface by surface-initiated atom transfer radical polymerization (S1-ATRP), and the grafting was fol... Poly(glycidylmethacrylate) (PGMA) brushes were grafted from chloromethylated polysulfone (CMPSF) mem- brane surface by surface-initiated atom transfer radical polymerization (S1-ATRP), and the grafting was followed by hydrolysis of epoxy groups in the grafting chains to improve the membrane's hydrophilie property. Fourier trans- form infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) measurements confirmed the suc- cessful grafting and hydrolysis of PGMA. The grafting degree of the monomer, measured by periodic acid titration and gravimetric analysis, increased linearly with the polymerization time, while the static water contact angle of the membrane grafted with PGMA or hydrolyzed PGMA linearly decreased. In comparison with the PGMA-grafted membranes, the hydrolyzed PGMA-grafted membranes possess stronger hydrophilicity as indicated by their contact angle and hydration capacity, and as a result they have an improved antifouling property. Therefore, the control of the hydrophilicity of PSF membrane could be realized through adjusting the polymerization time and transforming the functional groups in the grafting chain. 展开更多
关键词 membranes hydrophilic modification surface-initiated atom transfer radical polymerization hydroly-sis ANTIFOULING
原文传递
A novel hydrophilic polystyrene-based beads for hydrophilic interaction chromatography by surface-initiated atom transfer radical polymerization 被引量:2
3
作者 Xiao Jun Dai Yuan He +1 位作者 Yin Mao Wei Bo Lin Gong 《Chinese Chemical Letters》 SCIE CAS CSCD 2011年第2期245-248,共4页
A one-step procedure to hydrophilize monodisperse poly(chloromethyl-styrene-co-divinylbenzene) beads has been presented with 2-hydroxy-3-[4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl]propy1 2-methylacrylate(HTMA) as ... A one-step procedure to hydrophilize monodisperse poly(chloromethyl-styrene-co-divinylbenzene) beads has been presented with 2-hydroxy-3-[4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl]propy1 2-methylacrylate(HTMA) as monomer by surface-initiated atom transfer radical polymerization(SI-ATRP).The length of the grafted poly(HTMA) chain was varied via controlling the ratio of HTMA to initiator on the surface of the beads.Using these grafted beads as the stationary phase in hydrophilic interaction chromatography,good separation was obtained for nucleosides in the mobile phase of acetonitrile-water.It was also found that the retention time and selectivity of solutes showed a positive relationship with the length of the grafted poly(HTMA) chain. 展开更多
关键词 Hydrophilic interaction chromatography Polystyrene-based beads surface-initiated atom transfer radical polymerization 1 2 3-TRIAZOLE
原文传递
A High-Strength Cement System for Improved Dental Restoratives
4
作者 Dong Xie Jun Zhao Yiming Weng 《Journal of Materials Science and Chemical Engineering》 2014年第3期1-15,共15页
We have developed and studied a novel high-strength glass-ionomer cement system composed of poly(acrylic acid) with different molecular architectures. These poly(acrylic acid) polymers were synthesized via ATRP techni... We have developed and studied a novel high-strength glass-ionomer cement system composed of poly(acrylic acid) with different molecular architectures. These poly(acrylic acid) polymers were synthesized via ATRP technique. The effects of arm number and branching on reaction kinetics, viscosity, and mechanical strengths of the formed polymers and cements were evaluated. The results showed that unlike the star-shaped polymer synthesis both hyperbranched and star-hyperbranched polymers syntheses proceed slowly at the early stage but accelerate at the later stage. The higher the arm number and initiator concentration are, the faster the ATRP reaction was. It was also found that the higher the arm number and branching that the polymer had, the lower the viscosity of the polymer aqueous solution is and the lower the mechanical strengths of the formed cement are. The mechanical strengths of three synthesized polymers-composed experimental cements were very similar to each other but much higher than those of Fuji II LC. The experimental cements were 31% - 53% in CS, 37% - 55% in compressive modulus, 80% - 126% in DTS, 76% - 94% in FS, 4% - 21% in FT and 53% - 96% in KHN higher than Fuji II LC. For wear test, the experimental cements were only 5.4% - 13% of abrasive and 6.4% - 12% of attritional wear depths of Fuji II LC in each wear cycle. The one-month aging study also showed that all the experimental cements increased their CS continuously during 30 days, unlike Fuji II LC. 展开更多
关键词 Poly(acrylic acid) Molecular Architecture GLASS-IONOMER CEMENT atom-transfer radical polymerization Mechanical Strength
下载PDF
Synthesis and application of a novel star-hyperbranched poly(acrylic acid) for improved dental restoratives
5
作者 Jun Zhao Yiming Weng Dong Xie 《Journal of Biomedical Science and Engineering》 2010年第11期1050-1060,共11页
A new star-hyperbranched poly(acrylic acid) has been synthesized and incorporated into dental glassionomer cement for enhanced mechanical strengths. The effects of arm number and branching on viscosity of the polymer ... A new star-hyperbranched poly(acrylic acid) has been synthesized and incorporated into dental glassionomer cement for enhanced mechanical strengths. The effects of arm number and branching on viscosity of the polymer aqueous solution and mechanical strengths of the formed experimental cement were evaluated. It was found that the higher the arm number and the more the branching, the lower the viscosity of the polymer solution as well as the mechanical strengths of the formed cement. It was also found that the experimental cement exhibited significantly higher mechanical strengths than commercial Fuji II LC. The experimental cement was 51% in CS, 55% in compressive modulus, 118% in DTS, 82% in FS, 18% in FT and 85% in KHN higher than Fuji II LC. The experimental cement was only 6.7% of abrasive and 10% of attritional wear depths of Fuji II LC in each wear cycle. It appears that this novel experimental cement is a clinically attractive dental restorative and may potentially be used for high-wear and high-stress-bearing site restorations. 展开更多
关键词 Star-Hyperbranched Poly(Acrylic Acid) Light-Cured GLASS-IONOMER Cement atom-transfer radical polymerization Mechanical Strength
下载PDF
Grafting β-CD Copolymer Metal Complex from Silicon Gel by SI-ATRP
6
作者 JIANG Yan LIANG Yuan ZHANG Hong-wen ZHANG Rong 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2013年第6期1029-1031,共3页
Polymers grafted from solid surface are being extensively studied with a range of objectives.The most popular living/controlled polymerization used in polymers grafted from solid surfaces is the surface-initiated atom... Polymers grafted from solid surface are being extensively studied with a range of objectives.The most popular living/controlled polymerization used in polymers grafted from solid surfaces is the surface-initiated atom transfer radical polymerization(SI-ATRP)[1,2].An attractive feature of atom transfer radical polymerization(ATRP) is to simultaneously grow chains from multifunctional surface.Thus the grafted polymer with well-defined structures could be designed and controlled.ATRP has proven to be a powerful tool to synthesize homopolymers and copolymers,under easily accessible experimental conditions[3-7].Furthermore it is useful for the functionalization of material surfaces by grafting certain polymers. 展开更多
关键词 Silicon gel surface-initiated atom transfer radical polymerization Copolymer metal complex
原文传递
Preparation and Biocompatibility of Polyester Films Grafted with Functional mPEG Copolymers
7
作者 MA Yanhong JIANG Yan +3 位作者 LIANG Yuan ZHANG Weiwei ZHANG Hongwen ZHANG Rong 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2017年第5期847-852,共6页
The surface ofpoly(ethylene terephthalate)(PET) films is inert, hydrophobic, and incompatible with blood, which has limited its practical bioapplication. In this case, better biocompatibility could be achieved by ... The surface ofpoly(ethylene terephthalate)(PET) films is inert, hydrophobic, and incompatible with blood, which has limited its practical bioapplication. In this case, better biocompatibility could be achieved by surface modification. In this study, the grafted copolymer of functional methoxypolyethylene glycol(mPEG) derivatives and styrene from the PET surfaces was prepared via surface-initiated atom transfer radical polymerization(SI-ATRP). The structures, composition, properties and surface morphology of the grafted PET films were characterized by Fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy(XPS), contact angle measurements and scanning electronic microscopy(SEM). The results indicate that the surface of the PET films has been covered by a thick targeted copolymer layer that converted the hydrophobic surface of PET to an amphiphilic surface. The bacte- rial adhesion and cell culture results indicate the copolymer-grafted PET film may possess good biocompatibility. 展开更多
关键词 Poly(ethylene terephthalate) film surface-initiated atom transfer radical polymerization(SI-ATRP) Bio- compatibility
原文传递
Preparation of poly (N-isopropylacrylamide) brush bonded on silicon substrate and its water-based lubricating property 被引量:10
8
作者 LIU YuHong XIAO YuQi LUO JianBin 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第12期3352-3358,共7页
The poly (N-isopropylacrylamide) brush was covalently bonded on an initiator-coated silicon wafer via surface-initiated atom transfer radical polymerization. The polymer brush was (76.2±0.1) nm in thickness (by e... The poly (N-isopropylacrylamide) brush was covalently bonded on an initiator-coated silicon wafer via surface-initiated atom transfer radical polymerization. The polymer brush was (76.2±0.1) nm in thickness (by ellipsometer) with a grafting density of ca. 0.27 chains/nm 2 . The tribological properties of the poly (N-isopropylacrylamide) brush were investigated by means of ball-on-disk tests in a rotational mode under water lubrication for tribological application. The experimental results exhibited a low friction coefficient of ca. 0.03. The excellent lubrication property of the brush was due to its amide groups in the polymer chains. It was supposed that the good lubrication property of the brush was attributed to the cross-linked polymer network formed by the hydrogen bond association of N-H…O==C and the water molecular layer adsorbed by the terminal amide groups in the brush. The poly (N-isopropylacrylamide) solution also exhibits a lubrication property due to physical adsorption of the polymer chains. 展开更多
关键词 poly(N-isopropylacrylamide) brush surface-initiated atom transfer radical polymerization water-based lubricatingproperties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部