A sandwich structure with cladding alloyed 316L stainless steel on plain carbon steel was prepared by means of powder metallurgy (PM) processing. Electrolytic Cu and prealloyed bronze (95Cu wt pct, 5Sn wt pct) were ad...A sandwich structure with cladding alloyed 316L stainless steel on plain carbon steel was prepared by means of powder metallurgy (PM) processing. Electrolytic Cu and prealloyed bronze (95Cu wt pct, 5Sn wt pct) were added in different contents up to 15% into the surface cladded 316L layers and the effect of alloying concentrations on the corrosion resistance of the 316L cladding layers was studied. The corrosion performances of the cladding samples were studied by immersion tests and potentio-dynamic anodic polarization tests in H2S04 and FeCI3 solutions. Both 316L and alloyed 316L surface layers with 1.0 mm depth produced by PM cladding had an effect to improve corrosion resistance in H2SO4 and FeCI3 solutions. Small Cu and bronze addition (4%) had a positive effect in H2SO4 and FeCI3 solutions. 4% Cu alloyed 316L surface layer produced by PM cladding showed similar anodic polarization behaviour to the 316L cladding layer in H2SO4 and FeCl3 solutions.展开更多
Research reactors with neutron fluxes higher than 10^(14) n cm^(−2) s^(−1) are widely used in nuclear fuel and material irradiation,neutron-based scientific research,and medical and industrial isotope production.Such ...Research reactors with neutron fluxes higher than 10^(14) n cm^(−2) s^(−1) are widely used in nuclear fuel and material irradiation,neutron-based scientific research,and medical and industrial isotope production.Such high flux research reactors are not only important scientific research facilities for the development of nuclear energy but also represent the national comprehensive technical capability.China has several high flux research reactors that do not satisfy the requirements of nuclear energy development.A high flux research reactor has the following features:a compact core arrangement,high power density,plate-type fuel elements,a short refueling cycle,and high coolant velocity in the core.These characteristics make it difficult to simultaneously realize high neutron flux and optimal safety margin.A new multi-mission high flux research reactor was designed by the Institute of Nuclear and New Energy Technology at Tsinghua University in China;the reactor can simul-taneously realize an average neutron flux higher than 2.0×10^(15) n cm^(−2) s^(−1) and fulfill the current safety criterion.This high flux research reactor features advanced design concepts and has sufficient safety margins according to the preliminary safety analysis.Based on the analysis of the station blackout accident,loss of coolant accident,and reactivity accident of a single-control drum rotating out accidently,the maximum temperature of the cladding surface,minimum departure from nucleate boiling ratio,and temperature difference to the onset of nucleate boiling temperature satisfy the design limits.展开更多
Metallurgical equipment is subjected to severe working conditions and the components suffer from various types of physical damages such as abrasion,corrosion and crack. Advanced surface engineering technologies and re...Metallurgical equipment is subjected to severe working conditions and the components suffer from various types of physical damages such as abrasion,corrosion and crack. Advanced surface engineering technologies and resistant coatings on the damaged surface can improve surface properties, extend service lives, reduce maintenance costs and improve product quality in the metallurgical industry. This paper introduces remanufacturing technologies, including electroplating, overlaying welding, thermal spraying and laser surface cladding and their applications in the metallurgical industry, and analyzes the development tendency and prospect of remanufacturing technologies.展开更多
Friction stir welding [FSW) has achieved remarkable success in the joining and processing of aluminium alloys and other softer structural alloys. Conventional FSW, however, has not been entirely successful in the joi...Friction stir welding [FSW) has achieved remarkable success in the joining and processing of aluminium alloys and other softer structural alloys. Conventional FSW, however, has not been entirely successful in the joining, processing and manufacturing of different desired materials essential to meet the sophis- ticated green globe requirements. Through the efforts of improving the process and transferring the existing friction stir knowledge base to other advanced applications, several friction stir based daughter technologies have emerged over the timeline, A few among these technologies are well developed while others are under the process of emergence. Beginning with a broad classification of the scattered fric- tions stir based technologies into two categories, welding and processing, it appears now time to know, compile and review these to enable their rapid access for reference and academia. In this review article, the friction stir based technologies classified under the categol^J of welding are those applied for join- ing of materials while the remnant are labeled as friction stir processing (FSP) technologies. This review article presents an overview of four general aspects of both the developed and the developing friction stir based technologies, their associated process parameters, metallurgical features of their products and their feasibility and application to various materials. The lesser known and emerging technologies have been emphasized.展开更多
文摘A sandwich structure with cladding alloyed 316L stainless steel on plain carbon steel was prepared by means of powder metallurgy (PM) processing. Electrolytic Cu and prealloyed bronze (95Cu wt pct, 5Sn wt pct) were added in different contents up to 15% into the surface cladded 316L layers and the effect of alloying concentrations on the corrosion resistance of the 316L cladding layers was studied. The corrosion performances of the cladding samples were studied by immersion tests and potentio-dynamic anodic polarization tests in H2S04 and FeCI3 solutions. Both 316L and alloyed 316L surface layers with 1.0 mm depth produced by PM cladding had an effect to improve corrosion resistance in H2SO4 and FeCI3 solutions. Small Cu and bronze addition (4%) had a positive effect in H2SO4 and FeCI3 solutions. 4% Cu alloyed 316L surface layer produced by PM cladding showed similar anodic polarization behaviour to the 316L cladding layer in H2SO4 and FeCl3 solutions.
文摘Research reactors with neutron fluxes higher than 10^(14) n cm^(−2) s^(−1) are widely used in nuclear fuel and material irradiation,neutron-based scientific research,and medical and industrial isotope production.Such high flux research reactors are not only important scientific research facilities for the development of nuclear energy but also represent the national comprehensive technical capability.China has several high flux research reactors that do not satisfy the requirements of nuclear energy development.A high flux research reactor has the following features:a compact core arrangement,high power density,plate-type fuel elements,a short refueling cycle,and high coolant velocity in the core.These characteristics make it difficult to simultaneously realize high neutron flux and optimal safety margin.A new multi-mission high flux research reactor was designed by the Institute of Nuclear and New Energy Technology at Tsinghua University in China;the reactor can simul-taneously realize an average neutron flux higher than 2.0×10^(15) n cm^(−2) s^(−1) and fulfill the current safety criterion.This high flux research reactor features advanced design concepts and has sufficient safety margins according to the preliminary safety analysis.Based on the analysis of the station blackout accident,loss of coolant accident,and reactivity accident of a single-control drum rotating out accidently,the maximum temperature of the cladding surface,minimum departure from nucleate boiling ratio,and temperature difference to the onset of nucleate boiling temperature satisfy the design limits.
文摘Metallurgical equipment is subjected to severe working conditions and the components suffer from various types of physical damages such as abrasion,corrosion and crack. Advanced surface engineering technologies and resistant coatings on the damaged surface can improve surface properties, extend service lives, reduce maintenance costs and improve product quality in the metallurgical industry. This paper introduces remanufacturing technologies, including electroplating, overlaying welding, thermal spraying and laser surface cladding and their applications in the metallurgical industry, and analyzes the development tendency and prospect of remanufacturing technologies.
基金financial support on this work from the National Natural Science Foundation of China(Grant Nos.51475272 and 51550110501)Shandong University for the Postdoctoral fellowship
文摘Friction stir welding [FSW) has achieved remarkable success in the joining and processing of aluminium alloys and other softer structural alloys. Conventional FSW, however, has not been entirely successful in the joining, processing and manufacturing of different desired materials essential to meet the sophis- ticated green globe requirements. Through the efforts of improving the process and transferring the existing friction stir knowledge base to other advanced applications, several friction stir based daughter technologies have emerged over the timeline, A few among these technologies are well developed while others are under the process of emergence. Beginning with a broad classification of the scattered fric- tions stir based technologies into two categories, welding and processing, it appears now time to know, compile and review these to enable their rapid access for reference and academia. In this review article, the friction stir based technologies classified under the categol^J of welding are those applied for join- ing of materials while the remnant are labeled as friction stir processing (FSP) technologies. This review article presents an overview of four general aspects of both the developed and the developing friction stir based technologies, their associated process parameters, metallurgical features of their products and their feasibility and application to various materials. The lesser known and emerging technologies have been emphasized.