期刊文献+
共找到116篇文章
< 1 2 6 >
每页显示 20 50 100
Establishment and Optimization of Ablation Surrogate Model for Thermal Protection Material
1
作者 Weizhen Pan Bo Gao 《Journal of Beijing Institute of Technology》 EI CAS 2023年第4期477-493,共17页
The temperature response calculation of thermal protection materials,especially ablative thermal protection materials,usually adopts the ablation model,which is complicated in process and requires a large amount of ca... The temperature response calculation of thermal protection materials,especially ablative thermal protection materials,usually adopts the ablation model,which is complicated in process and requires a large amount of calculation.Especially in the process of optimization calculation and parameter identification,the ablation model needs to be called many times,so it is necessary to construct an ablation surrogate model to improve the computational efficiency under the premise of ensuring the accuracy.In this paper,the Gaussian process model method is used to construct a thermal protection material ablation surrogate model,and the prediction accuracy of the surrogate model is improved through optimization. 展开更多
关键词 ablation surrogate model thermal protection material
下载PDF
ROBUST OPTIMIZATION OF AERODYNAMIC DESIGN USING SURROGATE MODEL 被引量:4
2
作者 王宇 余雄庆 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2007年第3期181-187,共7页
To reduce the high computational cost of the uncertainty analysis, a procedure is proposed for the aerodynamic optimization under uncertainties, in which the surrogate model is used to simplify the computation of the ... To reduce the high computational cost of the uncertainty analysis, a procedure is proposed for the aerodynamic optimization under uncertainties, in which the surrogate model is used to simplify the computation of the uncertainty analysis. The surrogate model is constructed by using the Latin Hypercube design and the Kriging model. The random parameters are used to account for the small manufacturing errors and the variations of operating conditions. Based on the surrogate model, an uncertainty analysis approach, called the Monte Carlo simulation, is used to compute the mean value and the variance of the predicated performance. The robust optimization for aerodynamic design is formulated, and solved by the genetic algorithm. And then, an airfoil optimization problem is used to test the proposed procedure. Results show that the optimal solutions obtained from the uncertainty-based optimization formulation are less sensitive to uncertainties. And the design constraints are still satisfied under the uncertainties. 展开更多
关键词 surrogate model UNCERTAINTY AIRFOIL aerodynamic optimization
下载PDF
Optimization on the Crosswind Stability of Trains Using Neural Network Surrogate Model 被引量:4
3
作者 Le Zhang Tian Li +1 位作者 Jiye Zhang Ronghuan Piao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第4期208-224,共17页
Under the influence of crosswinds,the running safety of trains will decrease sharply,so it is necessary to optimize the suspension parameters of trains.This paper studies the dynamic performance of high-speed trains u... Under the influence of crosswinds,the running safety of trains will decrease sharply,so it is necessary to optimize the suspension parameters of trains.This paper studies the dynamic performance of high-speed trains under cross-wind conditions,and optimizes the running safety of train.A computational fluid dynamics simulation was used to determine the aerodynamic loads and moments experienced by a train.A series of dynamic models of a train,with different dynamic parameters were constructed,and analyzed,with safety metrics for these being determined.Finally,a surrogate model was built and an optimization algorithm was used upon this surrogate model,to find the minimum possible values for:derailment coefficient,vertical wheel-rail contact force,wheel load reduction ratio,wheel lateral force and overturning coefficient.There were 9 design variables,all associated with the dynamic parameters of the bogie.When the train was running with the speed of 350 km/h,under a crosswind speed of 15 m/s,the benchmark dynamic model performed poorly.The derailment coefficient was 1.31.The vertical wheel-rail contact force was 133.30 kN.The wheel load reduction rate was 0.643.The wheel lateral force was 85.67 kN,and the overturning coefficient was 0.425.After optimization,under the same running conditions,the metrics of the train were 0.268,100.44 kN,0.474,34.36 kN,and 0.421,respectively.This paper show that by combining train aerodynamics,vehicle system dynamics and many-objective optimization theory,a train’s stability can be more comprehensively analyzed,with more safety metrics being considered. 展开更多
关键词 SAFETY surrogate model OPTIMIZATION High-speed train CROSSWIND
下载PDF
Multi-objective optimisation of a vehicle energy absorption structure based on surrogate model 被引量:4
4
作者 谢素超 周辉 《Journal of Central South University》 SCIE EI CAS 2014年第6期2539-2546,共8页
In order to optimize the crashworthy characteristic of energy-absorbing structures, the surrogate models of specific energy absorption (SEA) and ratio of SEA to initial peak force (REAF) with respect to the design... In order to optimize the crashworthy characteristic of energy-absorbing structures, the surrogate models of specific energy absorption (SEA) and ratio of SEA to initial peak force (REAF) with respect to the design parameters were respectively constructed based on surrogate model optimization methods (polynomial response surface method (PRSM) and Kriging method (KM)). Firstly, the sample data were prepared through the design of experiment (DOE). Then, the test data models were set up based on the theory of surrogate model, and the data samples were trained to obtain the response relationship between the SEA &amp; REAF and design parameters. At last, the structure optimal parameters were obtained by visual analysis and genetic algorithm (GA). The results indicate that the KM, where the local interpolation method is used in Gauss correlation function, has the highest fitting accuracy and the structure optimal parameters are obtained as: the SEA of 29.8558 kJ/kg (corresponding toa=70 mm andt= 3.5 mm) and REAF of 0.2896 (corresponding toa=70 mm andt=1.9615 mm). The basis function of the quartic PRSM with higher order than that of the quadratic PRSM, and the mutual influence of the design variables are considered, so the fitting accuracy of the quartic PRSM is higher than that of the quadratic PRSM. 展开更多
关键词 railway vehicle energy-absorbing structure surrogate model Kriging method (KM) polynomial response surface method (PRSM) structure optimization
下载PDF
Random dynamic analysis of vertical train–bridge systems under small probability by surrogate model and subset simulation with splitting 被引量:11
5
作者 Huoyue Xiang Ping Tang +1 位作者 Yuan Zhang Yongle Li 《Railway Engineering Science》 2020年第3期305-315,共11页
The response of the train–bridge system has an obvious random behavior.A high traffic density and a long maintenance period of a track will result in a substantial increase in the number of trains running on a bridge... The response of the train–bridge system has an obvious random behavior.A high traffic density and a long maintenance period of a track will result in a substantial increase in the number of trains running on a bridge,and there is small likelihood that the maximum responses of the train and bridge happen in the total maintenance period of the track.Firstly,the coupling model of train–bridge systems is reviewed.Then,an ensemble method is presented,which can estimate the small probabilities of a dynamic system with stochastic excitations.The main idea of the ensemble method is to use the NARX(nonlinear autoregressive with exogenous input)model to replace the physical model and apply subset simulation with splitting to obtain the extreme distribution.Finally,the efficiency of the suggested method is compared with the direct Monte Carlo simulation method,and the probability exceedance of train responses under the vertical track irregularity is discussed.The results show that when the small probability of train responses under vertical track irregularity is estimated,the ensemble method can reduce both the calculation time of a single sample and the required number of samples. 展开更多
关键词 Train–bridge system Ensemble method surrogate model Nonlinear autoregressive with exogenous input Subset simulation with splitting Small probability
下载PDF
Uncertain Multidisciplinary Design Optimization on Next Generation Subsea Production System by Using Surrogate Model and Interval Method 被引量:3
6
作者 WU Jia-hao ZHEN Xing-wei +1 位作者 LIU Gang HUANG Yi 《China Ocean Engineering》 SCIE EI CSCD 2021年第4期609-621,共13页
The innovative Next Generation Subsea Production System(NextGen SPS)concept is a newly proposed petroleum development solution in ultra-deep water areas.The definition of NextGen SPS involves several disciplines,which... The innovative Next Generation Subsea Production System(NextGen SPS)concept is a newly proposed petroleum development solution in ultra-deep water areas.The definition of NextGen SPS involves several disciplines,which makes the design process difficult.In this paper,the definition of NextGen SPS is modeled as an uncertain multidisciplinary design optimization(MDO)problem.The deterministic optimization model is formulated,and three concerning disciplines—cost calculation,hydrodynamic analysis and global performance analysis are presented.Surrogate model technique is applied in the latter two disciplines.Collaborative optimization(CO)architecture is utilized to organize the concerning disciplines.A deterministic CO framework with two disciplinelevel optimizations is proposed firstly.Then the uncertainties of design parameters and surrogate models are incorporated by using interval method,and uncertain CO frameworks with triple loop and double loop optimization structure are established respectively.The optimization results illustrate that,although the deterministic MDO result achieves higher reduction in objective function than the uncertain MDO result,the latter is more reliable than the former. 展开更多
关键词 next generation subsea production system multidisciplinary design optimization uncertain optimization collaborative optimization surrogate model interval method
下载PDF
Fluid Analysis and Structure Optimization of Impeller Based on Surrogate Model 被引量:1
7
作者 Huanwei Xu Wenzhang Wei +1 位作者 Hanjin He Xuerui Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第7期173-199,共27页
The surrogate model technology has a good performance in solving black-box optimization problems,which is widely used in multi-domain engineering optimization problems.The adaptive surrogate model is the mainstream re... The surrogate model technology has a good performance in solving black-box optimization problems,which is widely used in multi-domain engineering optimization problems.The adaptive surrogate model is the mainstream research direction of surrogate model technology,which can realize model fitting and global optimization of engineering problems by infilling criteria.Based on the idea of the adaptive surrogate model,this paper proposes an efficient global optimization algorithm based on the local remodeling method(EGO-LR),which aims at improving the accuracy and optimization efficiency of the model.The proposed algorithm firstly constructs the expectation improvement(EI)function in the local area and optimizes it to get the update points.Secondly,the obtained update points are added to the global region until the global accuracy of the model meets the requirements.Then the differential evolution algorithm is used for global optimization.Sixteen benchmark functions are used to compare the EGO-LR algorithm with the existing algorithms.The results show that the EGO-LR algorithm can quickly converge to the accuracy requirements of the model and find the optimal value efficiently when facing complex problems with many local extrema and large variable spaces.The proposed algorithm is applied to the optimization design of the structural parameter of the impeller,and the outflow field analysis of the impeller is realized through finite element analysis.The optimization with the maximum fluid pressure(MP value)of the impeller as the objective function is completed,which effectively reduces the pressure value of the impeller under load. 展开更多
关键词 The surrogate model EGO ADAPTIVE fluid analysis IMPELLER
下载PDF
Surrogate model-assisted interactive genetic algorithms with individual’s fuzzy and stochastic fitness 被引量:1
8
作者 Xiaoyan SUN, Dunwei GONG (School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou Jiangsu 221116, China) 《控制理论与应用(英文版)》 EI 2010年第2期189-199,共11页
We propose a surrogate model-assisted algorithm by using a directed fuzzy graph to extract a user’s cognition on evaluated individuals in order to alleviate user fatigue in interactive genetic algorithms with an indi... We propose a surrogate model-assisted algorithm by using a directed fuzzy graph to extract a user’s cognition on evaluated individuals in order to alleviate user fatigue in interactive genetic algorithms with an individual’s fuzzy and stochastic fitness. We firstly present an approach to construct a directed fuzzy graph of an evolutionary population according to individuals’ dominance relations, cut-set levels and interval dominance probabilities, and then calculate an individual’s crisp fitness based on the out-degree and in-degree of the fuzzy graph. The approach to obtain training data is achieved using the fuzzy entropy of the evolutionary system to guarantee the credibilities of the samples which are used to train the surrogate model. We adopt a support vector regression machine as the surrogate model and train it using the sampled individuals and their crisp fitness. Then the surrogate model is optimized using the traditional genetic algorithm for some generations, and some good individuals are submitted to the user for the subsequent evolutions so as to guide and accelerate the evolution. Finally, we quantitatively analyze the performance of the presented algorithm in alleviating user fatigue and increasing more opportunities to find the satisfactory individuals, and also apply our algorithm to a fashion evolutionary design system to demonstrate its efficiency. 展开更多
关键词 Interactive genetic algorithms User fatigue surrogate model Directed fuzzy graph Fuzzy entropy
下载PDF
Optimal Design of Electrical Machines Assisted by Hybrid Surrogate Model Based Algorithm 被引量:2
9
作者 Ziyan Ren Yuan Sun +2 位作者 Baoyang Peng Bin Xia Xia Li 《CES Transactions on Electrical Machines and Systems》 CSCD 2020年第1期13-19,共7页
In this paper,for design of large-scale electromagnetic problems,a novel robust global optimization algorithm based on surrogate models is presented.The proposed algorithm can automatically select a proper meta-model ... In this paper,for design of large-scale electromagnetic problems,a novel robust global optimization algorithm based on surrogate models is presented.The proposed algorithm can automatically select a proper meta-model technique among multiple alternatives.In this paper,three representative meta-modeling techniques including ordinary Kriging,universal Kriging,and response surface method with multi-quadratic radial basis functions are applied.In each optimization iteration,the above three models are used for parallel calculation.The proposed hybrid surrogate model optimization algorithm synthesizes advantages of these different meta-models.Without verification of a specific meta-model,a suitable one for the engineering problem to be analyzed is automatically selected.Therefore,the proposed algorithm intends to make a better trade-off between numerical efficiency and searching accuracy for solving engineering problems,which are characterized by stronger non-linearity,higher complexity,non-convex feasible region,and expensive performance analysis. 展开更多
关键词 Electromagnetic problem global optimization hybrid surrogate model.
下载PDF
Optimization Design of High-speed Interior Permanent Magnet Motor with High Torque Performance Based on Multiple Surrogate Models 被引量:1
10
作者 Shengnan Wu Xiangde Sun Wenming Tong 《CES Transactions on Electrical Machines and Systems》 CSCD 2022年第3期235-240,共6页
In order to obtain better torque performance of high-speed interior permanent magnet motor(HSIPMM) and solve the problem that electromagnetic optimization design is seriously limited by its mechanical strength, a comp... In order to obtain better torque performance of high-speed interior permanent magnet motor(HSIPMM) and solve the problem that electromagnetic optimization design is seriously limited by its mechanical strength, a complete optimization design method is proposed in this paper. The object of optimization design is a 15 kW、20000 r/min HSIPMM whose permanent magnets in rotor is segmented. Eight structural dimensions are selected as its optimization variables. After design of experiment(DOE), multiple surrogate models are fitted, a set of surrogate models with minimum error is selected by using error evaluation indexes to optimize, the NSGA-II algorithm is used to get the optimal solution. The optimal solution is verified by load test on a 15 kW, 20000 r/min HSIPMM prototype. This paper can be used as a reference for the optimization design of HSIPMM. 展开更多
关键词 High-speed interior permanent magnet motor Segmented magnets Multi-objective optimization Multiple surrogate models
下载PDF
Deep Learning-Based Surrogate Model for Flight Load Analysis
11
作者 Haiquan Li Qinghui Zhang Xiaoqian Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第8期605-621,共17页
Flight load computations(FLC)are generally expensive and time-consuming.This paper studies deep learning(DL)-based surrogate models of FLC to provide a reliable basis for the strength design of aircraft structures.We ... Flight load computations(FLC)are generally expensive and time-consuming.This paper studies deep learning(DL)-based surrogate models of FLC to provide a reliable basis for the strength design of aircraft structures.We mainly analyze the influence of Mach number,overload,angle of attack,elevator deflection,altitude,and other factors on the loads of key monitoring components,based on which input and output variables are set.The data used to train and validate the DL surrogate models are derived using aircraft flight load simulation results based on wind tunnel test data.According to the FLC features,a deep neural network(DNN)and a random forest(RF)are proposed to establish the surrogate models.The DNN meets the FLC accuracy requirement using rich data sources in the FLC;the RF can alleviate overfitting and evaluate the importance of flight parameters.Numerical experiments show that both the DNN-and RF-based surrogate models achieve high accuracy.The input variables importance analysis demonstrates that vertical overload and elevator deflection have a significant influence on the FLC.We believe that synthetic applications of these DL-based surrogate methods show a great promise in the field of FLC. 展开更多
关键词 Flight load surrogate model deep learning deep neural network random forest
下载PDF
Evolutionary Algorithm with Ensemble Classifier Surrogate Model for Expensive Multiobjective Optimization
12
作者 LAN Tian 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第S01期76-87,共12页
For many real-world multiobjective optimization problems,the evaluations of the objective functions are computationally expensive.Such problems are usually called expensive multiobjective optimization problems(EMOPs).... For many real-world multiobjective optimization problems,the evaluations of the objective functions are computationally expensive.Such problems are usually called expensive multiobjective optimization problems(EMOPs).One type of feasible approaches for EMOPs is to introduce the computationally efficient surrogates for reducing the number of function evaluations.Inspired from ensemble learning,this paper proposes a multiobjective evolutionary algorithm with an ensemble classifier(MOEA-EC)for EMOPs.More specifically,multiple decision tree models are used as an ensemble classifier for the pre-selection,which is be more helpful for further reducing the function evaluations of the solutions than using single inaccurate model.The extensive experimental studies have been conducted to verify the efficiency of MOEA-EC by comparing it with several advanced multiobjective expensive optimization algorithms.The experimental results show that MOEA-EC outperforms the compared algorithms. 展开更多
关键词 multiobjective evolutionary algorithm expensive multiobjective optimization ensemble classifier surrogate model
下载PDF
Prediction of Aircraft's Longitudinal Motion Based on Aerodynamic Coefficients and Derivatives by Surrogate Model Approach
13
作者 Norazila Othman Masahiro Kanazaki 《Journal of Mechanics Engineering and Automation》 2014年第7期584-594,共11页
The accuracy of a flight simulation is highly dependent on the quality of the aerodynamic database and prediction accuracies of the aerodynamic coefficients and derivatives. A surrogate model is an approximation metho... The accuracy of a flight simulation is highly dependent on the quality of the aerodynamic database and prediction accuracies of the aerodynamic coefficients and derivatives. A surrogate model is an approximation method that is used to predict unknown functions based on the sampling data obtained by the design of experiments. This model can also be used to predict aerodynamic coefficients/derivatives using several measured points. The objective of this paper is to develop an efficient digital flight simulation by solving the equation of motion to predict the aerodynamics data using a surrogate model. Accordingly, there is a need to construct and investigate aerodynamic databases and compare the accuracy of the surrogate model with the exact solution, and hence solve the equation of motion for the flight simulation analysis. In this study, sample datas for models are acquired from the USAF Stability and Control DATCOM, and a database is constructed for two input variables (the angle of attack and Mach number), along with two derivatives of the X-force axis and three derivatives for the Z-force axis and pitching moment. Furthermore, a comparison of the value predicted by the Kriging model and the exact solution shows that its flight analysis prediction ability makes it possible to use the surrogate model in future analyses. 展开更多
关键词 surrogate model Kriging method equation of motion standard dynamics model.
下载PDF
Optimizing building retrofit through data analytics:A study of multi-objective optimization and surrogate models derived from energy performance certificates
14
作者 G.R.Araújo Ricardo Gomes +1 位作者 Paulo Ferrão M.Glória Gomes 《Energy and Built Environment》 EI 2024年第6期889-899,共11页
The building stock is responsible for a large share of global energy consumption and greenhouse gas emissions,therefore,it is critical to promote building retrofit to achieve the proposed carbon and energy neutrality ... The building stock is responsible for a large share of global energy consumption and greenhouse gas emissions,therefore,it is critical to promote building retrofit to achieve the proposed carbon and energy neutrality goals.One of the policies implemented in recent years was the Energy Performance Certificate(EPC)policy,which proposes building stock benchmarking to identify buildings that require rehabilitation.However,research shows that these mechanisms fail to engage stakeholders in the retrofit process because it is widely seen as a mandatory and complex bureaucracy.This study makes use of an EPC database to integrate machine learning techniques with multi-objective optimization and develop an interface capable of(1)predicting a building’s,or household’s,energy needs;and(2)providing the user with optimum retrofit solutions,costs,and return on investment.The goal is to provide an open-source,easy-to-use interface that guides the user in the building retrofit process.The energy and EPC prediction models show a coefficient of determination(R2)of 0.84 and 0.79,and the optimization results for one case study EPC with a 2000€budget limit inÉvora,Portugal,show decreases of up to 60%in energy needs and return on investments of up to 7 in 3 years. 展开更多
关键词 Building energy performance Building optimization Multi-Objective surrogate models Building retrofitting
原文传递
DeepSurNet-NSGA II:Deep Surrogate Model-Assisted Multi-Objective Evolutionary Algorithm for Enhancing Leg Linkage in Walking Robots
15
作者 Sayat Ibrayev Batyrkhan Omarov +1 位作者 Arman Ibrayeva Zeinel Momynkulov 《Computers, Materials & Continua》 SCIE EI 2024年第10期229-249,共21页
This research paper presents a comprehensive investigation into the effectiveness of the DeepSurNet-NSGA II(Deep Surrogate Model-Assisted Non-dominated Sorting Genetic Algorithm II)for solving complex multiobjective o... This research paper presents a comprehensive investigation into the effectiveness of the DeepSurNet-NSGA II(Deep Surrogate Model-Assisted Non-dominated Sorting Genetic Algorithm II)for solving complex multiobjective optimization problems,with a particular focus on robotic leg-linkage design.The study introduces an innovative approach that integrates deep learning-based surrogate models with the robust Non-dominated Sorting Genetic Algorithm II,aiming to enhance the efficiency and precision of the optimization process.Through a series of empirical experiments and algorithmic analyses,the paper demonstrates a high degree of correlation between solutions generated by the DeepSurNet-NSGA II and those obtained from direct experimental methods,underscoring the algorithm’s capability to accurately approximate the Pareto-optimal frontier while significantly reducing computational demands.The methodology encompasses a detailed exploration of the algorithm’s configuration,the experimental setup,and the criteria for performance evaluation,ensuring the reproducibility of results and facilitating future advancements in the field.The findings of this study not only confirm the practical applicability and theoretical soundness of the DeepSurNet-NSGA II in navigating the intricacies of multi-objective optimization but also highlight its potential as a transformative tool in engineering and design optimization.By bridging the gap between complex optimization challenges and achievable solutions,this research contributes valuable insights into the optimization domain,offering a promising direction for future inquiries and technological innovations. 展开更多
关键词 Multi-objective optimization genetic algorithm surrogate model deep learning walking robots
下载PDF
Optimal design of double-layer barrel vaults using genetic and pattern search algorithms and optimized neural network as surrogate model 被引量:1
16
作者 Reza JAVANMARDI Behrouz AHMADI-NEDUSHAN 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第3期378-395,共18页
This paper presents a combined method based on optimized neural networks and optimization algorithms to solve structural optimization problems.The main idea is to utilize an optimized artificial neural network(OANN)as... This paper presents a combined method based on optimized neural networks and optimization algorithms to solve structural optimization problems.The main idea is to utilize an optimized artificial neural network(OANN)as a surrogate model to reduce the number of computations for structural analysis.First,the OANN is trained appropriately.Subsequently,the main optimization problem is solved using the OANN and a population-based algorithm.The algorithms considered in this step are the arithmetic optimization algorithm(AOA)and genetic algorithm(GA).Finally,the abovementioned problem is solved using the optimal point obtained from the previous step and the pattern search(PS)algorithm.To evaluate the performance of the proposed method,two numerical examples are considered.In the first example,the performance of two algorithms,OANN+AOA+PS and OANN+GA+PS,is investigated.Using the GA reduces the elapsed time by approximately 50%compared with using the AOA.Results show that both the OANN+GA+PS and OANN+AOA+PS algorithms perform well in solving structural optimization problems and achieve the same optimal design.However,the OANN+GA+PS algorithm requires significantly fewer function evaluations to achieve the same accuracy as the OANN+AOA+PS algorithm. 展开更多
关键词 optimization surrogate models artificial neural network SAP2000 genetic algorithm
原文传递
Reliability-based design optimization of offshore wind turbine support structures using RBF surrogate model 被引量:1
17
作者 Changhai YU Xiaolong LV +1 位作者 Dan HUANG Dongju JIANG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第7期1086-1099,共14页
An efficient reliability-based design optimization method for the support structures of monopile offshore wind turbines is proposed herein.First,parametric finite element analysis(FEA)models of the support structure a... An efficient reliability-based design optimization method for the support structures of monopile offshore wind turbines is proposed herein.First,parametric finite element analysis(FEA)models of the support structure are established by considering stochastic variables.Subsequently,a surrogate model is constructed using a radial basis function(RBF)neural network to replace the time-consuming FEA.The uncertainties of loads,material properties,key sizes of structural components,and soil properties are considered.The uncertainty of soil properties is characterized by the variabilities of the unit weight,friction angle,and elastic modulus of soil.Structure reliability is determined via Monte Carlo simulation,and five limit states are considered,i.e.,structural stresses,tower top displacements,mudline rotation,buckling,and natural frequency.Based on the RBF surrogate model and particle swarm optimization algorithm,an optimal design is established to minimize the volume.Results show that the proposed method can yield an optimal design that satisfies the target reliability and that the constructed RBF surrogate model significantly improves the optimization efficiency.Furthermore,the uncertainty of soil parameters significantly affects the optimization results,and increasing the monopile diameter is a cost-effective approach to cope with the uncertainty of soil parameters. 展开更多
关键词 reliability-based design optimization offshore wind turbine parametric finite element analysis RBF surrogate model uncertain soil parameter
原文传递
Surrogate modeling for long-term and high-resolution prediction of building thermal load with a metric-optimized KNN algorithm 被引量:1
18
作者 Yumin Liang Yiqun Pan +2 位作者 Xiaolei Yuan Wenqi Jia Zhizhong Huang 《Energy and Built Environment》 2023年第6期709-724,共16页
During the pre-design stage of buildings,reliable long-term prediction of thermal loads is significant for cool-ing/heating system configuration and efficient operation.This paper proposes a surrogate modeling method ... During the pre-design stage of buildings,reliable long-term prediction of thermal loads is significant for cool-ing/heating system configuration and efficient operation.This paper proposes a surrogate modeling method to predict all-year hourly cooling/heating loads in high resolution for retail,hotel,and office buildings.16384 surrogate models are simulated in EnergyPlus to generate the load database,which contains 7 crucial building features as inputs and hourly loads as outputs.K-nearest-neighbors(KNN)is chosen as the data-driven algorithm to approximate the surrogates for load prediction.With test samples from the database,performances of five different spatial metrics for KNN are evaluated and optimized.Results show that the Manhattan distance is the optimal metric with the highest efficient hour rates of 93.57%and 97.14%for cooling and heating loads in office buildings.The method is verified by predicting the thermal loads of a given district in Shanghai,China.The mean absolute percentage errors(MAPE)are 5.26%and 6.88%for cooling/heating loads,respectively,and 5.63%for the annual thermal loads.The proposed surrogate modeling method meets the precision requirement of engineering in the building pre-design stage and achieves the fast prediction of all-year hourly thermal loads at the district level.As a data-driven approximation,it does not require as much detailed building information as the commonly used physics-based methods.And by pre-simulation of sufficient prototypical models,the method overcomes the gaps of data missing in current data-driven methods. 展开更多
关键词 Thermal load prediction surrogate modeling Pre-design K-nearest-neighbors Manhattan distance
原文传递
Efficient multi-objective CMA-ES algorithm assisted by knowledge-extraction-based variable-fidelity surrogate model
19
作者 Zengcong LI Kuo TIAN +1 位作者 Shu ZHANG Bo WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第6期213-232,共20页
To accelerate the multi-objective optimization for expensive engineering cases, a Knowledge-Extraction-based Variable-Fidelity Surrogate-assisted Covariance Matrix Adaptation Evolution Strategy(KE-VFS-CMA-ES) is prese... To accelerate the multi-objective optimization for expensive engineering cases, a Knowledge-Extraction-based Variable-Fidelity Surrogate-assisted Covariance Matrix Adaptation Evolution Strategy(KE-VFS-CMA-ES) is presented. In the first part, the KE-VFS model is established. Firstly, the optimization is performed using the low-fidelity surrogate model to obtain the Low-Fidelity Non-Dominated Solutions(LF-NDS). Secondly, aiming to obtain the High-Fidelity(HF) sample points located in promising areas, the K-means clustering algorithm and the space-filling strategy are used to extract knowledge from the LF-NDS to the HF space. Finally,the KE-VFS model is established by means of the obtained HF and LF sample points. In the second part, a novel model management based on the Modified Hypervolume Improvement(MHVI) criterion and pre-screening strategy is proposed. In each generation of KE-VFS-CMA-ES, excessive candidate points are firstly generated and then calculated by the MHVI criterion to find out a few potential points, which will be evaluated by the HF model. Through the above two parts,the promising areas can be detected and the potential points can be screened out, which contributes to speeding up the optimization process twofold. Three classic benchmark functions and a time-consuming engineering case of the aerospace integrally stiffened shell are studied, and results illustrate the excellent efficiency, robustness and applicability of KE-VFS-CMA-ES compared with other four known multi-objective optimization algorithms. 展开更多
关键词 Covariance matrix adaptation evolution strategy model management Multi-objective optimization surrogate-assisted evolutionary algorithm Variable-fidelity surrogate model
原文传递
Design Optimization and Analysis of Exit Rotor with Diffuser Passage based on Neural Network Surrogate Model and Entropy Generation Method
20
作者 JIN Yun GENG Shaojuan +2 位作者 LIU Shuaipeng NI Ming ZHANG Hongwu 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第2期739-752,共14页
In this paper,a diffuser passage compressor design is introduced via optimization to improve the aerodynamic performance of the exit rotor in a multistage axial compressor.An in-house design optimization platform,base... In this paper,a diffuser passage compressor design is introduced via optimization to improve the aerodynamic performance of the exit rotor in a multistage axial compressor.An in-house design optimization platform,based on genetic algorithm and back propagation neural network surrogate model,is constructed to perform the optimization.The optimization parameters include diffusion angle of meridian passage,diffusion length of meridian passage,change of blade camber angle and blade number.The impacts of these design parameters on efficiency and stability improvement are analyzed based on the optimization database.Two optimized diffuser passage compressor designs are selected from the optimization solution set by comprehensively considering efficiency and stability of the rotor,and the influencing mechanisms on efficiency and stability are further studied.The simulation results show that the application of diffuser passage compressor design can improve the load coefficient by 12.1%and efficiency by 1.28%at the design mass flow rate condition,and the stall margin can be improved by 12.5%.According to the local entropy generation model analysis,despite the upper and lower endwall loss of the diffuser passage rotor are increased,the profile loss is reduced compared with the original rotor.The efficiency of the diffuser passage rotor can be influenced by both loss and load.At the near stall condition,decreasing flow blockage at blade root region can improve the stall margin of the diffuser passage rotor. 展开更多
关键词 exit rotor diffuser passage neural network surrogate model entropy generation rate flow blockage
原文传递
上一页 1 2 6 下一页 到第
使用帮助 返回顶部