When tunnels are constructed at shallow depths in areas with poor geological conditions,such as portal sections,valleys and hillsides in regions with granitic bedrock,considerable excavation-induced deformation of the...When tunnels are constructed at shallow depths in areas with poor geological conditions,such as portal sections,valleys and hillsides in regions with granitic bedrock,considerable excavation-induced deformation of the surrounding rock may occur,potentially resulting in tunnel collapses.The main reason for these problems is the lack of understanding of the deformation mechanism and evolution of the soft granitic rock surrounding the tunnel and the adoption of inappropriate construction technology and methods.This article analyzes the deformation mechanism of the rock surrounding a shallow tunnel based on in situ monitoring data as a case study and suggests that certain measures should be taken to effectively control the deformation of the surrounding rock and to minimize the potential for tunnel collapse.The results show that the deformation of the granitic soil surrounding the tunnel can be divided into three stages:the rapid deformation stage,the slow deformation stage and the stabilization stage.Appropriate construction methods should be carefully selected to ensure safety during tunnel excavation in the first stage.To avoid secondary disasters caused by tunnel collapses,three treatment measures may be implemented as part of safety management:enhancing the monitoring of the surrounding rock deformation,adjusting the construction methods and optimizing the support systems.In particular,accurate monitoring data and timely information feedback play a vital role in tunnel construction.Therefore,engineers with considerable engineering experience and professional knowledge are needed to analyze the monitoring data and make accurate predictions of tunnel deformation to ensure that reasonable measures are taken in the process of shallow tunnel excavation.展开更多
The Jianpudong No. 4 tunnel is a shallow tunnel, which belongs to Shaoshan County scenic highway in Hunan province, China and whose surrounding rock is weak. According to its characteristics, the field monitoring test...The Jianpudong No. 4 tunnel is a shallow tunnel, which belongs to Shaoshan County scenic highway in Hunan province, China and whose surrounding rock is weak. According to its characteristics, the field monitoring tests and numerical analysis were done. The mechanical characteristics of shallow tunnels under weak surrounding rock and the stress-strain rule of surrounding rock and support were analyzed. The numerical analysis results show that the settlement caused by upper bench excavating accounts for 44% of the total settlement, and the settlement caused by tunnel upper bench supporting accounts for 56% of the total settlement. The maximum axial force of shotcrete lining is 177.2 k N, which locates in hance under the secondary lining. The maximum moment of shotcrete lining is 5.08 k N·m, which locates in the arch foot. The stress curve of steel arch has three obvious stages during the tunnel construction. The maximum axial force of steel arch is 297.4 k N, which locates in tunnel vault. The axial forces of steel arch are respectively 23.5 k N and-21.8 k N, which is influenced by eccentric compression of shallow tunnel and locates in hance. The results show that there is larger earth pressure in tunnel vault which is most unfavorable position of steel arch. Therefore, the advance support should be strengthened in tunnel vault during construction process.展开更多
It is very important to monitor surrounding rock deformation in tunnel construction. The principle, function, development and application of the system composed of a total station and computer for monitoring and analy...It is very important to monitor surrounding rock deformation in tunnel construction. The principle, function, development and application of the system composed of a total station and computer for monitoring and analyzing surrounding rock deformation were discussed. The new methods of two free station of 3D measurement and its mathematic adjustment mode were presented. The development of software for total station on-board and post for computer were also described. Without centering it and measuring its height, the total station controlled by the software on-board can fulfill the whole measurements to target points. Monitoring data can be processed by the post software and results of regression analysis, forecasting information of the tunnel surrounding rock deformation can be provided in time. The practical use shows that this system is practicable, highly accurate and efficient. It satisfies the needs of safety and information construction in tunnel construction of underground engineering.展开更多
The whole depth measuring plan and its implementation method of surrounding rock mass pressure on the wall′s of a shafts are described, which is in Suncun Coal Mine with a depth of 1 000 m.Then with the combination o...The whole depth measuring plan and its implementation method of surrounding rock mass pressure on the wall′s of a shafts are described, which is in Suncun Coal Mine with a depth of 1 000 m.Then with the combination of data processing, it is discussed the effects of such factors on the distribution law of shaft surrounding rock pressures as rock quality,burying depth, end effect due to excavating, rock stratum dip, shaft wall structure form and regression formulae relating to the shafts surrounding rock pressures as well as to several other factors.And finally, the measured results were verified according to the comparison between analyses of stress strain of side walls and side wall strain measurements.展开更多
The principle of sonic wave measurement was introduced, and cumulative damage effects of underground engineering rock mass under blasting load were studied by in situ test, using RSM-SY5 intelligent sonic wave apparat...The principle of sonic wave measurement was introduced, and cumulative damage effects of underground engineering rock mass under blasting load were studied by in situ test, using RSM-SY5 intelligent sonic wave apparatus. The blasting test was carried out for ten times at some tunnels of Changba Lead-Zinc Mine. The damage depth of surrounding rock caused by old blasting excavation (0.8-1.2 m) was confirmed. The relation between the cumulative damage degree and blast times was obtained. The results show that the sonic velocity decreases gradually with increasing blast times, hut the damage degree (D) increases. The damage cumulative law is non-linear. The damage degree caused by blast decreases with increasing distance, and damage effects become indistinct. The blasting damage of rock mass is anisotropic. The damage degree of rock mass within charging range is maximal. And the more the charge is, the more severe the damage degree of rock mass is. The test results provide references for researches of mechanical parameters of rock mass and dynamic stability analysis of underground chambers.展开更多
基金supported by the Project of Science and Technology Research and Development Plan of China Railway (Grant No. P2018G045)the Open Fund of Key Laboratory of Mountain Hazards and Earth Surface Processes, Chinese Academy of Sciencesthe Open Fund of Hunan International Scientific and Technological Innovation Cooperation Base of Advanced Construction and Maintenance Technology of Highway (Changsha University of Science & Technology) (Grant No. kfj190803)。
文摘When tunnels are constructed at shallow depths in areas with poor geological conditions,such as portal sections,valleys and hillsides in regions with granitic bedrock,considerable excavation-induced deformation of the surrounding rock may occur,potentially resulting in tunnel collapses.The main reason for these problems is the lack of understanding of the deformation mechanism and evolution of the soft granitic rock surrounding the tunnel and the adoption of inappropriate construction technology and methods.This article analyzes the deformation mechanism of the rock surrounding a shallow tunnel based on in situ monitoring data as a case study and suggests that certain measures should be taken to effectively control the deformation of the surrounding rock and to minimize the potential for tunnel collapse.The results show that the deformation of the granitic soil surrounding the tunnel can be divided into three stages:the rapid deformation stage,the slow deformation stage and the stabilization stage.Appropriate construction methods should be carefully selected to ensure safety during tunnel excavation in the first stage.To avoid secondary disasters caused by tunnel collapses,three treatment measures may be implemented as part of safety management:enhancing the monitoring of the surrounding rock deformation,adjusting the construction methods and optimizing the support systems.In particular,accurate monitoring data and timely information feedback play a vital role in tunnel construction.Therefore,engineers with considerable engineering experience and professional knowledge are needed to analyze the monitoring data and make accurate predictions of tunnel deformation to ensure that reasonable measures are taken in the process of shallow tunnel excavation.
基金Projects(51408060,51208063)supported by the National Natural Science Foundation of China
文摘The Jianpudong No. 4 tunnel is a shallow tunnel, which belongs to Shaoshan County scenic highway in Hunan province, China and whose surrounding rock is weak. According to its characteristics, the field monitoring tests and numerical analysis were done. The mechanical characteristics of shallow tunnels under weak surrounding rock and the stress-strain rule of surrounding rock and support were analyzed. The numerical analysis results show that the settlement caused by upper bench excavating accounts for 44% of the total settlement, and the settlement caused by tunnel upper bench supporting accounts for 56% of the total settlement. The maximum axial force of shotcrete lining is 177.2 k N, which locates in hance under the secondary lining. The maximum moment of shotcrete lining is 5.08 k N·m, which locates in the arch foot. The stress curve of steel arch has three obvious stages during the tunnel construction. The maximum axial force of steel arch is 297.4 k N, which locates in tunnel vault. The axial forces of steel arch are respectively 23.5 k N and-21.8 k N, which is influenced by eccentric compression of shallow tunnel and locates in hance. The results show that there is larger earth pressure in tunnel vault which is most unfavorable position of steel arch. Therefore, the advance support should be strengthened in tunnel vault during construction process.
基金Project(2000G033) supported by the S & T, Ministry of Railroad , China
文摘It is very important to monitor surrounding rock deformation in tunnel construction. The principle, function, development and application of the system composed of a total station and computer for monitoring and analyzing surrounding rock deformation were discussed. The new methods of two free station of 3D measurement and its mathematic adjustment mode were presented. The development of software for total station on-board and post for computer were also described. Without centering it and measuring its height, the total station controlled by the software on-board can fulfill the whole measurements to target points. Monitoring data can be processed by the post software and results of regression analysis, forecasting information of the tunnel surrounding rock deformation can be provided in time. The practical use shows that this system is practicable, highly accurate and efficient. It satisfies the needs of safety and information construction in tunnel construction of underground engineering.
文摘The whole depth measuring plan and its implementation method of surrounding rock mass pressure on the wall′s of a shafts are described, which is in Suncun Coal Mine with a depth of 1 000 m.Then with the combination of data processing, it is discussed the effects of such factors on the distribution law of shaft surrounding rock pressures as rock quality,burying depth, end effect due to excavating, rock stratum dip, shaft wall structure form and regression formulae relating to the shafts surrounding rock pressures as well as to several other factors.And finally, the measured results were verified according to the comparison between analyses of stress strain of side walls and side wall strain measurements.
基金Project (50490272) supported by the National Natural Science Foundation of ChinaProject(040109) supported by the Doctor Degree Paper Innovation Engineering of Central South University
文摘The principle of sonic wave measurement was introduced, and cumulative damage effects of underground engineering rock mass under blasting load were studied by in situ test, using RSM-SY5 intelligent sonic wave apparatus. The blasting test was carried out for ten times at some tunnels of Changba Lead-Zinc Mine. The damage depth of surrounding rock caused by old blasting excavation (0.8-1.2 m) was confirmed. The relation between the cumulative damage degree and blast times was obtained. The results show that the sonic velocity decreases gradually with increasing blast times, hut the damage degree (D) increases. The damage cumulative law is non-linear. The damage degree caused by blast decreases with increasing distance, and damage effects become indistinct. The blasting damage of rock mass is anisotropic. The damage degree of rock mass within charging range is maximal. And the more the charge is, the more severe the damage degree of rock mass is. The test results provide references for researches of mechanical parameters of rock mass and dynamic stability analysis of underground chambers.