Visual object tracking plays an important role in intelligent aerial surveillance by unmanned aerial vehicles(UAV). In ordinary applications, aerial videos are captured by cameras with a fixed-focus lens or a zoom l...Visual object tracking plays an important role in intelligent aerial surveillance by unmanned aerial vehicles(UAV). In ordinary applications, aerial videos are captured by cameras with a fixed-focus lens or a zoom lens, for which the field-of-view(FOV)of the camera is fixed or smoothly changed. In this paper, a special application of the visual tracking in aerial videos captured by the dual FOV camera is introduced, which is different from ordinary applications since the camera quickly switches its FOV during the capturing. Firstly, the tracking process with the dual FOV camera is analyzed, and a conclusion is made that the critical part for the whole process depends on the accurate tracking of the target at the moment of FOV switching. Then, a cascade mean shift tracker is proposed to deal with the target tracking under FOV switching. The tracker utilizes kernels with multiple bandwidths to execute mean shift locating, which is able to deal with the abrupt motion of the target caused by FOV switching. The target is represented by the background weighted histogram to make it well distinguished from the background, and a modification is made to the weight value in the mean shift process to accelerate the convergence of the tracker. Experimental results show that our tracker presents a good performance on both accuracy and efficiency for the tracking. To the best of our knowledge, this paper is the first attempt to apply a visual object tracking method to the situation where the FOV of the camera switches in aerial videos.展开更多
In this study,a novel approach based on the U-Net deep neural network for image segmentation is leveraged for real-time extraction of tracklets from optical acquisitions.As in all machine learning(ML)applications,a se...In this study,a novel approach based on the U-Net deep neural network for image segmentation is leveraged for real-time extraction of tracklets from optical acquisitions.As in all machine learning(ML)applications,a series of steps is required for a working pipeline:dataset creation,preprocessing,training,testing,and post-processing to refine the trained network output.Online websites usually lack ready-to-use datasets;thus,an in-house application artificially generates 360 labeled images.Particularly,this software tool produces synthetic night-sky shots of transiting objects over a specified location and the corresponding labels:dual-tone pictures with black backgrounds and white tracklets.Second,both images and labels are downscaled in resolution and normalized to accelerate the training phase.To assess the network performance,a set of both synthetic and real images was inputted.After the preprocessing phase,real images were fine-tuned for vignette reduction and background brightness uniformity.Additionally,they are down-converted to eight bits.Once the network outputs labels,post-processing identifies the centroid right ascension and declination of the object.The average processing time per real image is less than 1.2 s;bright tracklets are easily detected with a mean centroid angular error of 0.25 deg in 75%of test cases with a 2 deg field-of-view telescope.These results prove that an ML-based method can be considered a valid choice when dealing with trail reconstruction,leading to acceptable accuracy for a fast image processing pipeline.展开更多
Clustering-based sensor-management schemes have been widely used for various wireless sensor networks(WSNs), as they are well suited to the distributive and collaborative nature of WSN. In this paper, a C60-based clus...Clustering-based sensor-management schemes have been widely used for various wireless sensor networks(WSNs), as they are well suited to the distributive and collaborative nature of WSN. In this paper, a C60-based clustering algorithm is proposed for the specific planned network of space tracking and surveillance system(STSS), where all the sensors are partitioned into 12 clusters according to the C60(or football surface) architecture, and then a hierarchical sensor-management scheme is well designed.Finally, the algorithm is applied to a typical STSS constellation,and the simulation results show that the proposed method has better target-tracking performance than the nonclustering scheduling method.展开更多
基金supported by National Natural Science Foundation of China(Nos.61175032,61302154 and 61304096)
文摘Visual object tracking plays an important role in intelligent aerial surveillance by unmanned aerial vehicles(UAV). In ordinary applications, aerial videos are captured by cameras with a fixed-focus lens or a zoom lens, for which the field-of-view(FOV)of the camera is fixed or smoothly changed. In this paper, a special application of the visual tracking in aerial videos captured by the dual FOV camera is introduced, which is different from ordinary applications since the camera quickly switches its FOV during the capturing. Firstly, the tracking process with the dual FOV camera is analyzed, and a conclusion is made that the critical part for the whole process depends on the accurate tracking of the target at the moment of FOV switching. Then, a cascade mean shift tracker is proposed to deal with the target tracking under FOV switching. The tracker utilizes kernels with multiple bandwidths to execute mean shift locating, which is able to deal with the abrupt motion of the target caused by FOV switching. The target is represented by the background weighted histogram to make it well distinguished from the background, and a modification is made to the weight value in the mean shift process to accelerate the convergence of the tracker. Experimental results show that our tracker presents a good performance on both accuracy and efficiency for the tracking. To the best of our knowledge, this paper is the first attempt to apply a visual object tracking method to the situation where the FOV of the camera switches in aerial videos.
文摘In this study,a novel approach based on the U-Net deep neural network for image segmentation is leveraged for real-time extraction of tracklets from optical acquisitions.As in all machine learning(ML)applications,a series of steps is required for a working pipeline:dataset creation,preprocessing,training,testing,and post-processing to refine the trained network output.Online websites usually lack ready-to-use datasets;thus,an in-house application artificially generates 360 labeled images.Particularly,this software tool produces synthetic night-sky shots of transiting objects over a specified location and the corresponding labels:dual-tone pictures with black backgrounds and white tracklets.Second,both images and labels are downscaled in resolution and normalized to accelerate the training phase.To assess the network performance,a set of both synthetic and real images was inputted.After the preprocessing phase,real images were fine-tuned for vignette reduction and background brightness uniformity.Additionally,they are down-converted to eight bits.Once the network outputs labels,post-processing identifies the centroid right ascension and declination of the object.The average processing time per real image is less than 1.2 s;bright tracklets are easily detected with a mean centroid angular error of 0.25 deg in 75%of test cases with a 2 deg field-of-view telescope.These results prove that an ML-based method can be considered a valid choice when dealing with trail reconstruction,leading to acceptable accuracy for a fast image processing pipeline.
基金supported by the"Twelve-Fifth"National Defense Advanced Research Foundation of China(113010203)
文摘Clustering-based sensor-management schemes have been widely used for various wireless sensor networks(WSNs), as they are well suited to the distributive and collaborative nature of WSN. In this paper, a C60-based clustering algorithm is proposed for the specific planned network of space tracking and surveillance system(STSS), where all the sensors are partitioned into 12 clusters according to the C60(or football surface) architecture, and then a hierarchical sensor-management scheme is well designed.Finally, the algorithm is applied to a typical STSS constellation,and the simulation results show that the proposed method has better target-tracking performance than the nonclustering scheduling method.