The weather at the Xinglong Observing Station, where the Guo Shou Jing Telescope (GSJT) is located, is strongly affected by the monsoon climate in north- east China. The LAMOST survey strategy is constrained by thes...The weather at the Xinglong Observing Station, where the Guo Shou Jing Telescope (GSJT) is located, is strongly affected by the monsoon climate in north- east China. The LAMOST survey strategy is constrained by these weather patterns. We present statistics on observing hours from 2004 to 2007, and the sky brightness, seeing, and sky transparency from 1995 to 2011 at the site. We investigate effects of the site conditions on the survey plan. Operable hours each month show a strong cor- relation with season: on average there are eight operable hours per night available in December, but only one-two hours in July and August. The seeing and the sky trans- parency also vary with season. Although the seeing is worse in windy winters, and the atmospheric extinction is worse in the spring and summer, the site is adequate for the proposed scientific program of the LAMOST survey. With a Monte Carlo simulation using historical data on the site condition, we find that the available observation hours constrain the survey footprint from 22h to 16h in right ascension; the sky brightness allows LAMOST to obtain a limiting magnitude of V = 19.5 mag with S/N= 10.展开更多
基金partially supported by the Chinese Academy of Sciences through grant GJHZ 200812the National Natural Science Foundation of China (Grant Nos. 11243003, 10573022,10973015 and 11061120454)the US National Science Foundation, through grant AST-09-37523
文摘The weather at the Xinglong Observing Station, where the Guo Shou Jing Telescope (GSJT) is located, is strongly affected by the monsoon climate in north- east China. The LAMOST survey strategy is constrained by these weather patterns. We present statistics on observing hours from 2004 to 2007, and the sky brightness, seeing, and sky transparency from 1995 to 2011 at the site. We investigate effects of the site conditions on the survey plan. Operable hours each month show a strong cor- relation with season: on average there are eight operable hours per night available in December, but only one-two hours in July and August. The seeing and the sky trans- parency also vary with season. Although the seeing is worse in windy winters, and the atmospheric extinction is worse in the spring and summer, the site is adequate for the proposed scientific program of the LAMOST survey. With a Monte Carlo simulation using historical data on the site condition, we find that the available observation hours constrain the survey footprint from 22h to 16h in right ascension; the sky brightness allows LAMOST to obtain a limiting magnitude of V = 19.5 mag with S/N= 10.