Continuous data of aerosol optical thickness monitored using differential optical absorption spectroscopy (DOAS) are correlated with the concentration of ground-measured suspended particulate matter (SPM). A high ...Continuous data of aerosol optical thickness monitored using differential optical absorption spectroscopy (DOAS) are correlated with the concentration of ground-measured suspended particulate matter (SPM). A high correlation is found between the DOAS and the ground SPM data, making it possible to calculate the mass extinction efficiency of the aerosols in the atmosphere. It is found that the value of mean mass extinction efficiency (MEE) varies over a range of 2.6-13.7 m^2 g^-1, with smaller and larger values occurring for size distributions dominated by coarse and fine particles, respectively.展开更多
A two-month seabed-mounted observation(YSG1 area) was carried out in the western Yellow Sea Cold Water Mass(YSCWM) using an RDI-300 K acoustic Doppler current profiler(ADCP) placed at a water depth of 38 m in late sum...A two-month seabed-mounted observation(YSG1 area) was carried out in the western Yellow Sea Cold Water Mass(YSCWM) using an RDI-300 K acoustic Doppler current profiler(ADCP) placed at a water depth of 38 m in late summer, 2012. On August 2012, Typhoon Bolaven passed east of YSG1 with a maximum wind speed of 20 m s-1. The water depth, bottom temperature, and profile current velocities(including u, v and w components) were measured, and the results showed that the typhoon could induce horizontal current with speed greater than 70 cm s-1 in the water column, which is especially rare at below 20 meters above bottom(mab). The deepening velocity shear layer had an intense shear velocity of around 10 cm s-1 m-1, which indicated the deepening of the upper mixed layer. In the upper water column(above 20 mab), westward de-tide current with velocity greater than 30 cm s-1 was generated with the typhoon's onshore surge, and the direction of current movement shifted to become southward. In the lower water column, a possible pattern of eastward compensation current and delayed typhoon-driven current was demonstrated. During the typhoon, bottom temperature variation was changed into diurnal pattern because of the combined influence of typhoon and tidal current. The passage of Bolaven greatly intensified local sediment resuspension in the bottom layer. In addition, low-density particles constituted the suspended particulate matter(SPM) around 10 mab, which may be transported from the central South Yellow Sea by the typhoon. Overall, the intensive external force of the Typhoon Bolaven did not completely destroy the local thermocline, and most re-suspended sediments during the typhoon were restricted within the YSCWM.展开更多
Based on the principle of Tuned Mass Damper (TMD),the test of a new quake reduction system was investigated.The main structure of the system is connected with the top floor through Laminated Rubber Bearing (LRB) to m...Based on the principle of Tuned Mass Damper (TMD),the test of a new quake reduction system was investigated.The main structure of the system is connected with the top floor through Laminated Rubber Bearing (LRB) to make up a huge TMD system suspended structure. It was shown from the test that the new TMD quake reduction system can reduce the acceleration of the top floor by more than one quarter if the parameters are chosen efficiently.Since the good effectiveness and easy availability, this system has the practical value in earth quake engineering.展开更多
Based on the principle of tuned mass damper (TMD). the method of using laminated rubber bearing (LRB) to connect TMD with structure is discussed in this paper. This is a new type of TMD system-suspended structure. To ...Based on the principle of tuned mass damper (TMD). the method of using laminated rubber bearing (LRB) to connect TMD with structure is discussed in this paper. This is a new type of TMD system-suspended structure. To test the function of quake-reduction and the possibility of application, this paper explores the suspended top floor through shaking table test. In the model test, an electro-hydraulic shaking table was used. The main structure model was a four-story steel frame structure. The block to combat the structural quake was a concrete block. LRB was used to connect the block to the main structure. In order to analyze the efficiency of TMD, the fundamental frequencies of the main structure and block of TMD were measured separately first. Then. the frequencies of the main structure with the block and without the block were compared respectively under sine and imitative quake waves. The test shows that this new-typeTMD system is effective in combating the structural quake often reducing the acceleration of the top floor by more than 25 %. Because of the easy availability of the method, it is endowed with practical feasibility.展开更多
现行气柜结构抗震设计的地震反应计算模型中,将活塞质量计入质点,把活塞作为柜体结构抗震性能的不利因素。实际储气柜结构中的活塞受所储气体压力作用,呈悬浮状态,活塞周边与柜体之间采用弹簧和油封,并不直接刚性接触。文章依此实际状态...现行气柜结构抗震设计的地震反应计算模型中,将活塞质量计入质点,把活塞作为柜体结构抗震性能的不利因素。实际储气柜结构中的活塞受所储气体压力作用,呈悬浮状态,活塞周边与柜体之间采用弹簧和油封,并不直接刚性接触。文章依此实际状态,提出将活塞视为以悬浮质量块阻尼器(suspended mass damper,简称SMD)建立气柜结构的SMD计算模型,推导了活塞结构的刚度系数的计算公式;以某30×104m3正多边形气柜为例,选择3条地震波,应用状态空间分析法,利用Matlab软件实现2种计算模型的地震反应分析;计算结果对比分析表明活塞对柜体抗震具有显著的减震效果,属于有利影响;研究成果可以为气柜结构抗震设计和在役气柜的安全评估提供参考。展开更多
文摘Continuous data of aerosol optical thickness monitored using differential optical absorption spectroscopy (DOAS) are correlated with the concentration of ground-measured suspended particulate matter (SPM). A high correlation is found between the DOAS and the ground SPM data, making it possible to calculate the mass extinction efficiency of the aerosols in the atmosphere. It is found that the value of mean mass extinction efficiency (MEE) varies over a range of 2.6-13.7 m^2 g^-1, with smaller and larger values occurring for size distributions dominated by coarse and fine particles, respectively.
基金supported by the National Natural Science Foundation of China (Nos. 41806190, 41030856)National Program on Key Basic Research Project of China (973 Program, No. 2005CB422304)+3 种基金Qingdao Postdoctoral Application Research Project Fundingthe Fundamental Research Funds for the Central Universities (Nos. 20171305, 201562030,20176 2015, 201822027)the Project of Taishan Scholarthe Shared Voyage of National Nature Science Foundation of China for their support
文摘A two-month seabed-mounted observation(YSG1 area) was carried out in the western Yellow Sea Cold Water Mass(YSCWM) using an RDI-300 K acoustic Doppler current profiler(ADCP) placed at a water depth of 38 m in late summer, 2012. On August 2012, Typhoon Bolaven passed east of YSG1 with a maximum wind speed of 20 m s-1. The water depth, bottom temperature, and profile current velocities(including u, v and w components) were measured, and the results showed that the typhoon could induce horizontal current with speed greater than 70 cm s-1 in the water column, which is especially rare at below 20 meters above bottom(mab). The deepening velocity shear layer had an intense shear velocity of around 10 cm s-1 m-1, which indicated the deepening of the upper mixed layer. In the upper water column(above 20 mab), westward de-tide current with velocity greater than 30 cm s-1 was generated with the typhoon's onshore surge, and the direction of current movement shifted to become southward. In the lower water column, a possible pattern of eastward compensation current and delayed typhoon-driven current was demonstrated. During the typhoon, bottom temperature variation was changed into diurnal pattern because of the combined influence of typhoon and tidal current. The passage of Bolaven greatly intensified local sediment resuspension in the bottom layer. In addition, low-density particles constituted the suspended particulate matter(SPM) around 10 mab, which may be transported from the central South Yellow Sea by the typhoon. Overall, the intensive external force of the Typhoon Bolaven did not completely destroy the local thermocline, and most re-suspended sediments during the typhoon were restricted within the YSCWM.
文摘Based on the principle of Tuned Mass Damper (TMD),the test of a new quake reduction system was investigated.The main structure of the system is connected with the top floor through Laminated Rubber Bearing (LRB) to make up a huge TMD system suspended structure. It was shown from the test that the new TMD quake reduction system can reduce the acceleration of the top floor by more than one quarter if the parameters are chosen efficiently.Since the good effectiveness and easy availability, this system has the practical value in earth quake engineering.
文摘Based on the principle of tuned mass damper (TMD). the method of using laminated rubber bearing (LRB) to connect TMD with structure is discussed in this paper. This is a new type of TMD system-suspended structure. To test the function of quake-reduction and the possibility of application, this paper explores the suspended top floor through shaking table test. In the model test, an electro-hydraulic shaking table was used. The main structure model was a four-story steel frame structure. The block to combat the structural quake was a concrete block. LRB was used to connect the block to the main structure. In order to analyze the efficiency of TMD, the fundamental frequencies of the main structure and block of TMD were measured separately first. Then. the frequencies of the main structure with the block and without the block were compared respectively under sine and imitative quake waves. The test shows that this new-typeTMD system is effective in combating the structural quake often reducing the acceleration of the top floor by more than 25 %. Because of the easy availability of the method, it is endowed with practical feasibility.
文摘现行气柜结构抗震设计的地震反应计算模型中,将活塞质量计入质点,把活塞作为柜体结构抗震性能的不利因素。实际储气柜结构中的活塞受所储气体压力作用,呈悬浮状态,活塞周边与柜体之间采用弹簧和油封,并不直接刚性接触。文章依此实际状态,提出将活塞视为以悬浮质量块阻尼器(suspended mass damper,简称SMD)建立气柜结构的SMD计算模型,推导了活塞结构的刚度系数的计算公式;以某30×104m3正多边形气柜为例,选择3条地震波,应用状态空间分析法,利用Matlab软件实现2种计算模型的地震反应分析;计算结果对比分析表明活塞对柜体抗震具有显著的减震效果,属于有利影响;研究成果可以为气柜结构抗震设计和在役气柜的安全评估提供参考。