Water temperature,turbidity,chlorophyll-a and suspended sediment concentration (SSC) were investigated at 61 stations of eight sections in the southern Huanghai Sea (HS) and the East China Sea (ECS) during the s...Water temperature,turbidity,chlorophyll-a and suspended sediment concentration (SSC) were investigated at 61 stations of eight sections in the southern Huanghai Sea (HS) and the East China Sea (ECS) during the summer (28 June to 15 July) of 2006.The horizontal distribution of suspended parti culate matter (SPM) displayed a high concentration inshore and a low value offshore.The maximum value can reach 10.4 mg/dm 3,which can be found at the Changjiang River mouth.For the same site,the SSC was generally higher at the bottom than on the surface.In the vertical direction,distribution characteristics of turbidity can be divided into two types:in the southern HS high values at the bottom while low values on the surface,and in the ECS high values inshore with low values offshore.The thermocline in the HS and the Taiwan Warm Current in the ECS could be important factors preventing the SPM from diffusing upward and seaward.Even the typhoon Ewiniar was not able to work on the major sediment transport under the thermocline during the observation.展开更多
Samples taken from the Chukchi Sea (CS) during the 4th Chinese National Arctic Research Expedition, 2010, were analyzed to determine the content and composition of suspended particulate matter (SPM) to improve our...Samples taken from the Chukchi Sea (CS) during the 4th Chinese National Arctic Research Expedition, 2010, were analyzed to determine the content and composition of suspended particulate matter (SPM) to improve our understanding of the distribution, sources and control factors of the SPM there. The results show that the SPM in the water column is highest in the middle and near the bottom in the south and central-north CS, followed by that off the Alaskan coast and in Barrow Canyon. The SPM content is lowest in the central CS. Scanning electron microscope (SEM) analysis shows that the SPM in the south and central-north CS is composed mainly of diatoms, but the dominant species in those two areas are different. The SPM off the Alaskan coast and in Barrow Canyon is composed mainly of terrigenous material with few bio-skeletal clasts. The distribution of temperature and salinity and the correlation between diatom species in SPM indicate that the diatom dominant SPM in the south CS is from the Pacific Ocean via the Bering Strait in summer. The diatom dominant SPM in the central-north CS is also from Pacific water, which reaches the CS in winter. The SPM in the middle and near the bottom of the water column off the Alaskan coast and in Barrow Canyon is from Alaskan coastal water and terrigenous material transported by rivers in Alaska.展开更多
The climate variability induced by the El Nino-Southern Oscillation(ENSO)cycle drives significant changes in the physical state of the tropical Western Pacific,which has important impacts on the upper ocean carbon cyc...The climate variability induced by the El Nino-Southern Oscillation(ENSO)cycle drives significant changes in the physical state of the tropical Western Pacific,which has important impacts on the upper ocean carbon cycle.During 2015-2016,a super El Nino event occurred in the equatorial Pacific.Suspended particulate matter(SPM)data and related environmental observations in the tropical Western Pacific were obtained during two cruses in Dec.2014 and 2015,which coincided with the early and peak stages of this super El Nino event.Compared with the marine environments in the tropical Western Pacific in Dec.2014,an obviously enhanced upwelling occurred in the Mindanao Dome region;the nitrate concentration in the euphotic zone almo st tripled;and the size,mass concentration,and volume concentration of SPM obviously increased in Dec.2015.The enhanced upwelling in the Mindanao Dome region carried cold but eutrophic water upward from the deep ocean to shallow depths,even into the euphotic zone,which disrupted the previously N-limited conditions and induced a remarkable increase in phytoplankton blooms in the euphotic zone.The se results reveal the mechanism of how nutrient-limited ecosystems in the tropical Western Pacific respond to super El Nino events.In the context of the ENSO cycle,if predicted changes in biogenic particles occur,the proportion of carbon storage in the tropical Western Pacific is estimated to be increased by more than 52%,ultimately affecting the regional and possibly even global carbon cycle.This paper highlights the prospect for long-term prediction of the impact of a super El Nino event on the global carbon cycle and has profound implications for understanding El Nino events.展开更多
To determine the pollution levels and potential toxic risks of arsenic(As) and heavy metals(Cr, Ni, Cu, Zn, Pb and Cd) in water and suspended particulate matter(SPM) in tail reaches(including freshwater reach and low-...To determine the pollution levels and potential toxic risks of arsenic(As) and heavy metals(Cr, Ni, Cu, Zn, Pb and Cd) in water and suspended particulate matter(SPM) in tail reaches(including freshwater reach and low-salinity reach) of the Yellow River as the Flow-Sediment Regulation Project(FSRP) has been carried out for approximately 15 yr, the surface water and SPM were sampled at pre-flood(April) and post-flood seasons(October). Results showed that similar changes of As and metal levels in water and SPM were observed along the tail reaches at pre-flood or post-flood season. Compared to pre-flood season, the levels of As, Cu, Cr and Ni in freshwater reach and the concentrations of Cr and Ni in low-salinity reach rose greatly at post-flood season. The levels of As and metals in SPM of freshwater reach or low-salinity reach at pre-flood season were significantly higher than those at post-flood season(P < 0.01).The pollutions of As and metals in surface water of tail reaches at pre-flood or post-flood season were not serious. The SPM in freshwater reach at pre-flood season were polluted by Cd, As, Cr, Cu and Ni while those in low-salinity reach were polluted by Cd and Cr. The SPM in freshwater reach at post-flood season were polluted by Cd and Pb while those in low-salinity reach were polluted by Cd and Cr.Cd was identified as heavy metal of primary concern at both pre-flood and post-flood seasons. Combined with the existed data reported in present research, this study found that the toxic risk of As and metals in SPM of tail reaches at pre-flood season was higher than that at post-flood season, implying that the implementation of FSRP during flooding season, to a great extent, reduced the toxic risk of these elements. With the long-term implementation of FSRP, the pollution levels of As and metals(particularly for Cd) in SPM of tail reaches might be elevated and the potential toxic risk primarily produced by Cr, Ni and As might be increased if effective measures were not taken in future.展开更多
Continuous data of aerosol optical thickness monitored using differential optical absorption spectroscopy (DOAS) are correlated with the concentration of ground-measured suspended particulate matter (SPM). A high ...Continuous data of aerosol optical thickness monitored using differential optical absorption spectroscopy (DOAS) are correlated with the concentration of ground-measured suspended particulate matter (SPM). A high correlation is found between the DOAS and the ground SPM data, making it possible to calculate the mass extinction efficiency of the aerosols in the atmosphere. It is found that the value of mean mass extinction efficiency (MEE) varies over a range of 2.6-13.7 m^2 g^-1, with smaller and larger values occurring for size distributions dominated by coarse and fine particles, respectively.展开更多
The grain-size of suspended particulate matter (SPM) in the Huanghe Estuary and its adjacent sea area was investigated with an in situ laser particle size analyzer (LISST-100) in November 2006.The spatial distribu...The grain-size of suspended particulate matter (SPM) in the Huanghe Estuary and its adjacent sea area was investigated with an in situ laser particle size analyzer (LISST-100) in November 2006.The spatial distribution of the grain-size parameters was very complicated.The results show that (1) the mean particle size of SPM ranged from 3.00Φ to 6.41Φ,with an average value of 4.66Φ;(2) the frequency distribution patterns of the SPM grain-size showed three different types,which were mono-mode,dual-mode and tri-mode,respectively;(3) C-M chart suggested that the transportation-processes of the SPM not only included suspended mode,but also the bed load transportation mode.The bed load transportation mode mainly occurred at the bottom layer.The characteristics and space distribution of SPM grain-size might be mainly controlled by sediment discharge of the Huanghe River,hydrodynamics condition,surface sediment types,and biological process within the study area.展开更多
The results obtained from an investigation of suspended particulate matter in the metropolitan city of Lahore (Pakistan) are reported and analysed in this paper. X-ray diffraction studies of the airborne matter collec...The results obtained from an investigation of suspended particulate matter in the metropolitan city of Lahore (Pakistan) are reported and analysed in this paper. X-ray diffraction studies of the airborne matter collected from various urban and suburban sites show that non-clay minerals such as quartz, calcite and albite are contained in most of the samples in almost comparable amounts. Chemical analysis of some samples was carried out for complementing the x-ray diffraction data. The amount of quartz in the samples of dusty areas was found to be an order of magnitude more than in the samples of relatively cleaner areas. As the dust particles of these compounds are poor substrate for promoting nucleation of ice in the atmospheric clouds, they are liable to stay steadily in the atmosphere as pollutants.A comparison of the results of the airborne particulates and the soil samples collected from various sites show that the sources of quartz, calcite and albite in the airborne matter are both local and remote.展开更多
Transitional ecosystems,estuaries and the coastal seas,are distinctively affected by natural and anthropogenic factors.Organic matter(OM)originating from terrestrial sources is exported by rivers and forms a key compo...Transitional ecosystems,estuaries and the coastal seas,are distinctively affected by natural and anthropogenic factors.Organic matter(OM)originating from terrestrial sources is exported by rivers and forms a key component of the global biogeochemical cycles.Most previous studies focused on the bulk biochemical and anthropogenic aspects affecting these ecosystems.In the present study,we examined the sources and fate of OM entrained within suspended particulate matter(SPM)of the Zuari River and its estuary,west coast of India.Besides using amino acid(AA)enantiomers(L-and D-forms)as biomarkers,other bulk biochemical parameters viz.particulate organic carbon(POC),δ13C,particulate nitrogen(PN),δ15N and chlorophyll a were analyzed.Surprisingly no significant temporal variations were observed in the parameters analyzed;nonetheless,salinity,POC,δ13C,PN,δ15N,glutamic acid,serine,alanine,tyrosine,leucine and D-aspartic acid exhibited significant spatial variability suggesting source differentiation.The POC content displayed weak temporal variability with low values observed during the post-monsoon season attributed to inputs from mixed sources.Estuarine samples were less depleted than the riverine samples suggesting contributions from marine plankton in addition to contributions from river plankton and terrestrial C3 plants detritus.Labile OM was observed during the monsoon and post-monsoon seasons in the estuarine region.More degraded OM was noticed during the pre-monsoon season.Principal component analysis was used to ascertain the sources and factors influencing OM.Principally five factors were extracted explaining 84.52%of the total variance.The first component accounted for 27.10%of the variance suggesting the dominance of tidal influence whereas,the second component accounted for heterotrophic bacteria and their remnants associated with the particulate matter,contributing primarily to the AA pool.Based on this study we ascertained the role of the estuarine turbidity maximum(ETM)controlling the sources of POM and its implications to small tropical rivers.Thus,changes in temporal and regional settings are more likely to affect the natural biogeochemical cycles of small tropical rivers.展开更多
Natural radionuclides are powerful tools for understanding the sources and fate of suspended particulate matter(SPM).Particulate matter with different particle sizes behaves differently with respect to adsorption and ...Natural radionuclides are powerful tools for understanding the sources and fate of suspended particulate matter(SPM).Particulate matter with different particle sizes behaves differently with respect to adsorption and desorption.We analyzed the activi-ties and distribution characteristics of multiple natural radionuclides(238U,226Ra,40K,228Ra,7Be and 210Pbex)on size-fractionated SPM at the Lijin Hydrographic Station(Huanghe or Yellow River)every month over a one-year period.Results showed that medium silt(16–32µm)was the main component.As expected,the activity of each radionuclide decreased with an increase of particle size.We examined the sources of SPM with different particle sizes using activity ratios of 226Ra/238U,228Ra/226Ra,40K/238U and 7Be/210Pbex,and concluded that SPM with different particle sizes originated from different sources.Our results indicate that fine SPM(<32µm)was mainly from the erosion of soil along the lower reaches of the Yellow River,while coarse SPM(>32µm)was mainly derived from resuspension of riverbed sediment.During high runoff periods,the concentration of SPM increased significantly,and the pro-portion of fine particles originating upstream increased.Naturally occurring radioactive isotopes,especially on size-fractionated par-ticles,are therefore seen as useful tracers to understand the sources and behaviors of riverine particles transported from land to sea.展开更多
Temporal and spatial distribution of biogenic (BSi) and lithogenic (LSi) silica were studied in the Changjiang (Yangtze River) Estuary and its adjacent area. The annual average BSi and LSi concentrations were (...Temporal and spatial distribution of biogenic (BSi) and lithogenic (LSi) silica were studied in the Changjiang (Yangtze River) Estuary and its adjacent area. The annual average BSi and LSi concentrations were (1.714-1.79) #mol/L and (0.564-1.41) mmol/L, respectively. Both BSi and LSi were high ii~. tbe inshore ar- eas, where they received terrigenous discharge from the Changjiang, and decreased towards the offshore region. BSi and LSi were most abundant at the near bottom layer due to the high sedimentation rates and resuspension of sediment. Diatom blooms occurred in summer with high Chl a concentration in the sur- face layer, which induced that BSi in the surface layer during summer was obviously higher than that in the surface layer of other seasons. LSi concentration was maximal in autumn and spring and minimum in summer, associated with the seasonal variation of SPM values. Drifting investigation and mesocosm exper- iments were conducted during dinoflagellate bloom, aiming to understand the effect of nutrients on BSi by changing the phytoplankton composition. The results show that the low dissolved inorganic phosphorus concentration and high molar ratio of N/P (dissolved inorganic nitrogen vs. dissolved inorganic phospho- rus), were the important factors for decreasing diatom biomass in the study area, and it would subsequently decrease the BSi concentration in aquatic ecosystem.展开更多
The finite element method was used to simulate the currents of Jiaozhou Bay and the nearcoast areas, and then established the model of the transport and diffusion of suspended particulate matter there. The transport a...The finite element method was used to simulate the currents of Jiaozhou Bay and the nearcoast areas, and then established the model of the transport and diffusion of suspended particulate matter there. The transport and diffusion of dredged matter near the discharging field were estimated; and the results were used to analyze the effects of the suspended particulate matter on the marine environment.展开更多
Sediment resuspension plays an important role in the transport and fate of heavy metals in the aquatic environment. In the present study, the release and binding forms of Cr, Cu, Zn, Pb under hydrodynamic conditions w...Sediment resuspension plays an important role in the transport and fate of heavy metals in the aquatic environment. In the present study, the release and binding forms of Cr, Cu, Zn, Pb under hydrodynamic conditions were investigated using an annular flume. Two sediments located at YLZ and GBD from Liangshui River, Beijing were resuspended for 10 hr at 0.159 and 0.267 m/see, respectively. The concentrations of suspended particulate matters of YLZ were higher than those of GBD during resuspension, indicating that the former sediment is more sensitive to the velocity. Cr in the dissolved phase stayed nearly constant at about 2.25 and 1.84 I^g/L for YLZ and GBD, respectively, due to the high percentage of its stable binding fractions in both sediments, while Cu, Zn, and Pb showed a fast release in the initial period of time. However, their concentrations in SPM generally decreased with time and were higher at the lower velocity of 0.159 m/see, which resulted from the entrainment and depressing effect of larger size particles with lower heavy metal content, commonly referred to as the "particle concentration effect". In addition, the binding form and heavy metal fractions were also found to vary during the resuspension event. A decrease in the sulphide/organic matters bounded form in GBD sediment was observed, whereas no visible changes were perceived in YLZ site samples. This phenomenon is due to the oxidation of heavy metal-sulphide binding forms, which originated from its high acid volatile sulphide content in GBD sediment.展开更多
As organic pollutants of emerging concern,organophosphate esters(OPEs)have shown toxicity to organisms after entering the water environment.However,research on OPEs in freshwater in Southwest China is very limited.The...As organic pollutants of emerging concern,organophosphate esters(OPEs)have shown toxicity to organisms after entering the water environment.However,research on OPEs in freshwater in Southwest China is very limited.The levels,distribution and partitioning behavior of OPEs in the Minjiang River and their influencing factors is still unknown.In this study,six OPEs,tri-n-butyl phosphate(Tn BP),tri(2-chloroethyl)-phosphate(TCEP),trichloropropyl phosphate(TCPP),triphenyl phosphate(TPh P),tributoxyethyl phosphate(TBEP),and tris(2-ethylhexyl)-phosphate(TEHP),were determined in surface water,suspended particle matter(SPM)and sediments of the Minjiang River.The results showed that the average concentrations of∑_(6)OPEs in surface water,SPM and sediments of the Minjiang River were 199.32±124.95 ng/L,38463.79±45641.89 ng/g dry weight(dw)and 76.45±28.00 ng/g dw,respectively.High concentrations of OPEs were detected in SPM samples,indicating that more attention should be paid to pollution in SPM.It is worth noting that the variation trend of OPEs in SPM was almost opposite to that in water but basically similar to that in sediment.The proportions of alkyl OPEs in∑_(6)OPEs increased from surface water to SPM and sediments.Alkyl OPEs were the main pollutants in SPM(10.44%–80.88%of∑_(6)OPEs,mean of 54.52%)and sediments(59.08%–81.30%of∑_(6)OPEs,mean of 68.91%),whereas chlorinated OPEs were the most abundant components in surface water(43.16%–75.99%ofδ∑_(6)OPEs,mean of 55.50%).The water-sediment partition coefficient(logKOC)of OPEs was 4.97–7.58,while the water-SPM partition coefficient was 6.71–10.00.No significant correlations were found between log KOW and logKOC.KOW was not the main factor affecting the distribution of OPEs in the Minjiang River,China.展开更多
Dissolved inorganic phosphorus (DIP ),dissolved organic phosphorus (DOP ),particulate inorganic phosphorus (P IP ) and particulate organic phosphorus (P OP ) in the Jiaozhou Bay (JZB) and its adjacent major ...Dissolved inorganic phosphorus (DIP ),dissolved organic phosphorus (DOP ),particulate inorganic phosphorus (P IP ) and particulate organic phosphorus (P OP ) in the Jiaozhou Bay (JZB) and its adjacent major rivers were analyzed during 2001–2003.DIP was the major form of dissolved phosphorus in JZB,representing 62%–83% of the total dissolved phosphorus (T DP ),and the P IP concentration generally exceeded the P OP concentration.The concentrations of phosphorus were higher in the north than in the south of the bay,which were related to the fluvial input and water exchange rate.The dissolved phosphorus concentrations were higher in the autumn and spring than in the summer,while the seasonal variation of particulate phosphorus showed opposite pattern.The distribution of phosphorus is mainly affected by the growth of phytoplankton,desorption/adsorption of DIP from and to particulates,and anthropogenic activities.A preliminary phosphorus budget was established.In JZB,riverine input and water exchange flow between JZB and the Huanghai (Yellow) Sea are the major sources of phosphorus,followed by industrial and domestic waste transport,and then atmospheric deposition.Phosphorus burial efficiency is estimated to be 91%.About 52.2 × 10 6 mol/a of phosphorus were assimilated by phytoplankton,of which about 68% was recycled in the water column and sediment.展开更多
Massive green tides caused by Ulva prolifera in the Yellow Sea have occurred every summer since 2007 and have caused huge economic losses for local governments. The Subei (North liangsu Province, China) Shoal, with ...Massive green tides caused by Ulva prolifera in the Yellow Sea have occurred every summer since 2007 and have caused huge economic losses for local governments. The Subei (North liangsu Province, China) Shoal, with its large-scale Porphyra aquaculture, has been regarded as the most important source of U. prolifera for green tides. To reveal the physical mechanisms of floating and drifting algae in this area, the characteristics of the current, the temperature, the salinity and suspended particulate matter (SPM) in the southwestern Yellow Sea, especially in the Subei Shoal, were studied. The topography of the radial sand ridges in the Subei Shoal constrains the features of the currents and causes net longitudinal and latitudinal movements. The longitudinal net movement is a dominant dynamic factor that can bring U. prolifera into offshore waters. The amount of gas that is produced by algae during photosynthesis determines whether U. prolifera can float well on the sea surface after it is disposed into the water from Porphyra aquacultural apparatus. The Subei Shoal is characterized by a high turbidity, which can result in significant light attenuation and affect the photosynthesis together with the buoyancy of a U. prolifera in the water. According to satellite remote sensing data from 2012, the three-month-averaged surface SPM (April, May and June) in the Subei Shoal was 140 mg/dm^3, and the north of the Subei Shoal (the north of 34.5°N), it was 11 mg/dm^3. According to the monthly averaged surface SPM in April, the transparency in the Subei Shoal was only 0.1 m, but it often exceeded 2.0 m outside of the Subei Shoal. The results explain why the floating ability of U. prolifera increases significantly once the green algae drifted outside the Subei Shoal.展开更多
Based on the principle of conservative matter removal in estuary,a new method is proposed for estimating the ratio of sediment resuspension in estuaries with fine suspended sediments in the turbidity maximum zone(TMZ)...Based on the principle of conservative matter removal in estuary,a new method is proposed for estimating the ratio of sediment resuspension in estuaries with fine suspended sediments in the turbidity maximum zone(TMZ) of the Changjiang(Yangtze) estuary during 2005.Results show that there was a range of 18.7%±27.9% to 73.9%±22.5% per annum of total suspended particulate matter(SPM),with an average of 49.2%.Nearly half of the particulate matter in the TMZ originates from sediment resuspension.This indicates that sediment resuspension is one of the major mechanisms involved in formation of the TMZ.Compared with traditional method for calculating these ratios in the estuary,this new method evaluates the dynamic variation of SPM content carried by river runoff from the river mouth to the ocean.The new method produced more reliable results than the traditional one and could produce a better estimation of resuspension flux for particulate matter in estuaries.展开更多
The Isonzo River has been demonstrated to be a continuing point source of mercury(Hg)in the Gulf of Trieste although the Idrija mine was last active in 1996. The present study aims to investigate the role of the sus...The Isonzo River has been demonstrated to be a continuing point source of mercury(Hg)in the Gulf of Trieste although the Idrija mine was last active in 1996. The present study aims to investigate the role of the suspended particulate matter(SPM) associated with tidal fluxes to disperse particulate Hg(PHg) into the Grado coastal lagoon system. PHg concentrations(avg. 3.11 ± 2.62 μg/g, d.w.), notwithstanding the ebb or flood tides, were significantly higher than the local sediment background(0.13 μg/g). The relative affinity of Hg for the particulate phase in surface waters was confirmed by higher average distribution coefficient(Kd) values(5.6–6.7). PHg contents showed the highest values in ebb tide conditions, thus suggesting their origin from the erosion of tidal flats and saltmarshes of the lagoon. When compared to river discharge, high PHg surface concentrations in flood tide are related to rainfall events occurring within the river basin. Results can be used to make an indicative assessment of the amount of Hg bound to SPM which is transported in and out of the lagoon basin following the action of tidal fluxes. A simple estimation provides a negative budget for the Grado lagoon sub-basin which loses between 0.14 and 1.16 kg of PHg during a tidal semi-cycle. This conclusion is in agreement with the evidence of morphological deterioration which has emerged from recent studies on the lagoon environment, and which testifies to a current sedimentary loss from the lagoon into the northern Adriatic Sea.展开更多
ENVISAT/MERIS scenes of Lake Guiers covering the period 2003-2010 were processed for concentration retrieval of chlorophyll a (CHLa), suspended particulate matter (SPM) and colored fraction of dissolved organic matter...ENVISAT/MERIS scenes of Lake Guiers covering the period 2003-2010 were processed for concentration retrieval of chlorophyll a (CHLa), suspended particulate matter (SPM) and colored fraction of dissolved organic matter (CDOM), i.e. the three main parameters relevant to the water quality management of the lake. Estimates in the range of 30 - 117 μg CHLa L<sup>-1</sup> (average 62.13 μg·L<sup>-1</sup>), 0.10 - 29.0 mg SPM L<sup>-1</sup> (average 22.01 mg·L<sup>-1</sup>), and 1.10 - 1.90 CDOM m<sup>-1</sup> (average 1.33 m<sup>-1</sup>) were recorded, suggesting the possibility of occasional poor quality waters in some compartments of the lake. The values calculated as part of this study are consistent with literature data. On the basis of these estimates, interpretations were made as to the feasibility of applying MERIS data for synoptic environmental monitoring purposes. The data were subjected to statistical analysis, including regression analysis and significance tests. Estimates of CHLa and CDOM revealed some level of correlation, which suggests that phytoplankton biomass degradation may account for nearly 47% of the dissolved optical compounds CDOM. Notable areas of high CHLa and CDOM concentrations are found in the southern inshore zone, an environment with less water agitation. In contrast, SPM concentrations tend to increase in environments of very shallow water marked by high water turbulence and bottom mobility. However, it was not possible to fully assess the model performance and detection accuracy of the results due to lack of ground truths. Nonetheless, the results show concentrations that compared well with the insitu data from earlier studies and data reported elsewhere from other lacustrine systems. Therefore, it can be inferred from this study that MERIS data present a useful low-cost (i.e. cost effective and readily available) approach for environmental monitoring of Lake Guiers waters with excellent spatial coverage. In addition, the study highlighted the minimal effect of the so-called “bottom effect” on model predictions, despite the small depth of the lake.展开更多
Results are presented of the longitudinal and vertical profiling of salinity and suspended particulate matter(SPM) at the Muthupet estuary, India, during a one year period under widely varying freshwater flow conditio...Results are presented of the longitudinal and vertical profiling of salinity and suspended particulate matter(SPM) at the Muthupet estuary, India, during a one year period under widely varying freshwater flow conditions. Freshwater flow was available during post-monsoon and monsoon. An up-estuary shift in the location of estuarine turbidity maxima(ETM) was observed during the transition from post-monsoon to pre-monsoon and further it shifted downstream during the transition from pre-monsoon to monsoon, thereby exhibiting a pronounced seasonal cycle. The salinity intrusion was dependent on the freshwater discharge and was expressed as a power function of freshwater flow, explaining 97% of the variance. The formation of a salt plug in Muthupet estuary and its seasonal dynamics were observed, which is not an identified feature of any of the Indian estuaries studied so far. The geographical positions of salt plug and ETM core were more or less the same during their formation. The occurrence of two ETM during the LW of post-monsoon and the absence of ETM during monsoon explains the strong seasonal variation in the formation of ETM. The primary factor affecting the formation of ETM was identified as the freshwater flow over an annual cycle; the resuspension of sediments by tidal current affecting the formation on a flood/ebb cycle was secondary. The extent of shift of ETM was found to be an inverse logarithmic function of the freshwater discharge. The separation between ETM intrusion and salinity intrusion increased two fold with the increase in ETM intrusion.展开更多
Phosphorous (P) fraction characteristics in sediment resuspension were investigated under adequately hydrodynamic conditions. Four forms of P in overlying water, including dissolved inorganic P, dissolved total P, t...Phosphorous (P) fraction characteristics in sediment resuspension were investigated under adequately hydrodynamic conditions. Four forms of P in overlying water, including dissolved inorganic P, dissolved total P, total P, and particulate P, and six fractions of P in suspended particulate matter (SPM), including loosely sorbed P (NH4Cl-P), redox-sensitive P (BD-P), aluminum-bound P (Al- P), organic P (NaOH-nrP), calcium-bound P (Ca-P) and residual P (Res-P), were quantified, respectively. Different hydrodynamic conditions resulted in different P form changes. Four states could be ascribed: (1) P desorption by sediment and SPM, and P adsorption by overlying water; (2) P desorption by SPM, and P adsorption by overlying water; (3) P adsorption by SPM, and P desorption by overlying water; and (4) P equilibrium between SPM and overlying water. The contents of P in overlying water acquired peak values in the middle position of the vertical P distribution due to the combined actions of SPM and sediment. P fractions in SPM were in the following order: BD-P 〉 NaOH-nrp 〉 Ca-P 〉 Al-P 〉 Res-P 〉 NH4Cl-P. BD-P in SPM frequently exchanged with P forms in overlying water. Resuspension was favorable to forming Ca-P in SPM.展开更多
基金The National Natural Science Foundation Project of China "Sedimentary dynamic mechanism of the Huanghai Warm Current" under contract No.40906025the National Natural Science Foundation Project of China "Formation and development of the muddy deposition in the central south Huanghai Sea,and its relation to climate and environmental change" under contract No.41030856+1 种基金State Basic Research Program of China ("973" Program) under contract No.2005CB422304the Public Science and Technology Research Funds Projects of Ocean under contract Nos 200905001 and 201005019
文摘Water temperature,turbidity,chlorophyll-a and suspended sediment concentration (SSC) were investigated at 61 stations of eight sections in the southern Huanghai Sea (HS) and the East China Sea (ECS) during the summer (28 June to 15 July) of 2006.The horizontal distribution of suspended parti culate matter (SPM) displayed a high concentration inshore and a low value offshore.The maximum value can reach 10.4 mg/dm 3,which can be found at the Changjiang River mouth.For the same site,the SSC was generally higher at the bottom than on the surface.In the vertical direction,distribution characteristics of turbidity can be divided into two types:in the southern HS high values at the bottom while low values on the surface,and in the ECS high values inshore with low values offshore.The thermocline in the HS and the Taiwan Warm Current in the ECS could be important factors preventing the SPM from diffusing upward and seaward.Even the typhoon Ewiniar was not able to work on the major sediment transport under the thermocline during the observation.
基金supported by 4th Chinese National Arctic Research Expedition (Grant no. CHINARE-2010)Public Science and Technology Research Funds Projects of Ocean (Grant nos. 201105022-2 and 201205003)Chinese Polar Environment Comprehensive Investigation & Assessment Programms (Grant nos. CHINARE2014-03-02 and CHINARE2014-04-03-03)
文摘Samples taken from the Chukchi Sea (CS) during the 4th Chinese National Arctic Research Expedition, 2010, were analyzed to determine the content and composition of suspended particulate matter (SPM) to improve our understanding of the distribution, sources and control factors of the SPM there. The results show that the SPM in the water column is highest in the middle and near the bottom in the south and central-north CS, followed by that off the Alaskan coast and in Barrow Canyon. The SPM content is lowest in the central CS. Scanning electron microscope (SEM) analysis shows that the SPM in the south and central-north CS is composed mainly of diatoms, but the dominant species in those two areas are different. The SPM off the Alaskan coast and in Barrow Canyon is composed mainly of terrigenous material with few bio-skeletal clasts. The distribution of temperature and salinity and the correlation between diatom species in SPM indicate that the diatom dominant SPM in the south CS is from the Pacific Ocean via the Bering Strait in summer. The diatom dominant SPM in the central-north CS is also from Pacific water, which reaches the CS in winter. The SPM in the middle and near the bottom of the water column off the Alaskan coast and in Barrow Canyon is from Alaskan coastal water and terrigenous material transported by rivers in Alaska.
基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Nos.XDB42010203,XDA19060401,XDA23050503)the Science&Technology Basic Resources Investigation Program of China(No.2017FY100802)+1 种基金the Open Fund for Key Laboratory of Mar.Geol.and Environment,Institute of Oceanology,Chinese Academy of Sciences(No.MGE2019KG03)the Qingdao(Laoshan)Postdoctoral Applied Research Proj ect in 2019(No.Y9KY161)。
文摘The climate variability induced by the El Nino-Southern Oscillation(ENSO)cycle drives significant changes in the physical state of the tropical Western Pacific,which has important impacts on the upper ocean carbon cycle.During 2015-2016,a super El Nino event occurred in the equatorial Pacific.Suspended particulate matter(SPM)data and related environmental observations in the tropical Western Pacific were obtained during two cruses in Dec.2014 and 2015,which coincided with the early and peak stages of this super El Nino event.Compared with the marine environments in the tropical Western Pacific in Dec.2014,an obviously enhanced upwelling occurred in the Mindanao Dome region;the nitrate concentration in the euphotic zone almo st tripled;and the size,mass concentration,and volume concentration of SPM obviously increased in Dec.2015.The enhanced upwelling in the Mindanao Dome region carried cold but eutrophic water upward from the deep ocean to shallow depths,even into the euphotic zone,which disrupted the previously N-limited conditions and induced a remarkable increase in phytoplankton blooms in the euphotic zone.The se results reveal the mechanism of how nutrient-limited ecosystems in the tropical Western Pacific respond to super El Nino events.In the context of the ENSO cycle,if predicted changes in biogenic particles occur,the proportion of carbon storage in the tropical Western Pacific is estimated to be increased by more than 52%,ultimately affecting the regional and possibly even global carbon cycle.This paper highlights the prospect for long-term prediction of the impact of a super El Nino event on the global carbon cycle and has profound implications for understanding El Nino events.
基金Under the auspices of National Natural Science Foundation of China(No.41971128,41371104)the Award Program for Min River Scholar in Fujian Province(No.Min 201531)。
文摘To determine the pollution levels and potential toxic risks of arsenic(As) and heavy metals(Cr, Ni, Cu, Zn, Pb and Cd) in water and suspended particulate matter(SPM) in tail reaches(including freshwater reach and low-salinity reach) of the Yellow River as the Flow-Sediment Regulation Project(FSRP) has been carried out for approximately 15 yr, the surface water and SPM were sampled at pre-flood(April) and post-flood seasons(October). Results showed that similar changes of As and metal levels in water and SPM were observed along the tail reaches at pre-flood or post-flood season. Compared to pre-flood season, the levels of As, Cu, Cr and Ni in freshwater reach and the concentrations of Cr and Ni in low-salinity reach rose greatly at post-flood season. The levels of As and metals in SPM of freshwater reach or low-salinity reach at pre-flood season were significantly higher than those at post-flood season(P < 0.01).The pollutions of As and metals in surface water of tail reaches at pre-flood or post-flood season were not serious. The SPM in freshwater reach at pre-flood season were polluted by Cd, As, Cr, Cu and Ni while those in low-salinity reach were polluted by Cd and Cr. The SPM in freshwater reach at post-flood season were polluted by Cd and Pb while those in low-salinity reach were polluted by Cd and Cr.Cd was identified as heavy metal of primary concern at both pre-flood and post-flood seasons. Combined with the existed data reported in present research, this study found that the toxic risk of As and metals in SPM of tail reaches at pre-flood season was higher than that at post-flood season, implying that the implementation of FSRP during flooding season, to a great extent, reduced the toxic risk of these elements. With the long-term implementation of FSRP, the pollution levels of As and metals(particularly for Cd) in SPM of tail reaches might be elevated and the potential toxic risk primarily produced by Cr, Ni and As might be increased if effective measures were not taken in future.
文摘Continuous data of aerosol optical thickness monitored using differential optical absorption spectroscopy (DOAS) are correlated with the concentration of ground-measured suspended particulate matter (SPM). A high correlation is found between the DOAS and the ground SPM data, making it possible to calculate the mass extinction efficiency of the aerosols in the atmosphere. It is found that the value of mean mass extinction efficiency (MEE) varies over a range of 2.6-13.7 m^2 g^-1, with smaller and larger values occurring for size distributions dominated by coarse and fine particles, respectively.
基金The Ministry of Science and Technology of China under contract No. 2005CB422304the National Natural Science Foundation of China under contract No. 40976020
文摘The grain-size of suspended particulate matter (SPM) in the Huanghe Estuary and its adjacent sea area was investigated with an in situ laser particle size analyzer (LISST-100) in November 2006.The spatial distribution of the grain-size parameters was very complicated.The results show that (1) the mean particle size of SPM ranged from 3.00Φ to 6.41Φ,with an average value of 4.66Φ;(2) the frequency distribution patterns of the SPM grain-size showed three different types,which were mono-mode,dual-mode and tri-mode,respectively;(3) C-M chart suggested that the transportation-processes of the SPM not only included suspended mode,but also the bed load transportation mode.The bed load transportation mode mainly occurred at the bottom layer.The characteristics and space distribution of SPM grain-size might be mainly controlled by sediment discharge of the Huanghe River,hydrodynamics condition,surface sediment types,and biological process within the study area.
文摘The results obtained from an investigation of suspended particulate matter in the metropolitan city of Lahore (Pakistan) are reported and analysed in this paper. X-ray diffraction studies of the airborne matter collected from various urban and suburban sites show that non-clay minerals such as quartz, calcite and albite are contained in most of the samples in almost comparable amounts. Chemical analysis of some samples was carried out for complementing the x-ray diffraction data. The amount of quartz in the samples of dusty areas was found to be an order of magnitude more than in the samples of relatively cleaner areas. As the dust particles of these compounds are poor substrate for promoting nucleation of ice in the atmospheric clouds, they are liable to stay steadily in the atmosphere as pollutants.A comparison of the results of the airborne particulates and the soil samples collected from various sites show that the sources of quartz, calcite and albite in the airborne matter are both local and remote.
基金The National Natural Science Foundation of China under contract No.41530960
文摘Transitional ecosystems,estuaries and the coastal seas,are distinctively affected by natural and anthropogenic factors.Organic matter(OM)originating from terrestrial sources is exported by rivers and forms a key component of the global biogeochemical cycles.Most previous studies focused on the bulk biochemical and anthropogenic aspects affecting these ecosystems.In the present study,we examined the sources and fate of OM entrained within suspended particulate matter(SPM)of the Zuari River and its estuary,west coast of India.Besides using amino acid(AA)enantiomers(L-and D-forms)as biomarkers,other bulk biochemical parameters viz.particulate organic carbon(POC),δ13C,particulate nitrogen(PN),δ15N and chlorophyll a were analyzed.Surprisingly no significant temporal variations were observed in the parameters analyzed;nonetheless,salinity,POC,δ13C,PN,δ15N,glutamic acid,serine,alanine,tyrosine,leucine and D-aspartic acid exhibited significant spatial variability suggesting source differentiation.The POC content displayed weak temporal variability with low values observed during the post-monsoon season attributed to inputs from mixed sources.Estuarine samples were less depleted than the riverine samples suggesting contributions from marine plankton in addition to contributions from river plankton and terrestrial C3 plants detritus.Labile OM was observed during the monsoon and post-monsoon seasons in the estuarine region.More degraded OM was noticed during the pre-monsoon season.Principal component analysis was used to ascertain the sources and factors influencing OM.Principally five factors were extracted explaining 84.52%of the total variance.The first component accounted for 27.10%of the variance suggesting the dominance of tidal influence whereas,the second component accounted for heterotrophic bacteria and their remnants associated with the particulate matter,contributing primarily to the AA pool.Based on this study we ascertained the role of the estuarine turbidity maximum(ETM)controlling the sources of POM and its implications to small tropical rivers.Thus,changes in temporal and regional settings are more likely to affect the natural biogeochemical cycles of small tropical rivers.
基金financially supported by the National Natural Science Foundation of China(Nos.U22A20580,42130410,and U1906210)the Fundamental Research Funds for the Central Universities(No.201962003).
文摘Natural radionuclides are powerful tools for understanding the sources and fate of suspended particulate matter(SPM).Particulate matter with different particle sizes behaves differently with respect to adsorption and desorption.We analyzed the activi-ties and distribution characteristics of multiple natural radionuclides(238U,226Ra,40K,228Ra,7Be and 210Pbex)on size-fractionated SPM at the Lijin Hydrographic Station(Huanghe or Yellow River)every month over a one-year period.Results showed that medium silt(16–32µm)was the main component.As expected,the activity of each radionuclide decreased with an increase of particle size.We examined the sources of SPM with different particle sizes using activity ratios of 226Ra/238U,228Ra/226Ra,40K/238U and 7Be/210Pbex,and concluded that SPM with different particle sizes originated from different sources.Our results indicate that fine SPM(<32µm)was mainly from the erosion of soil along the lower reaches of the Yellow River,while coarse SPM(>32µm)was mainly derived from resuspension of riverbed sediment.During high runoff periods,the concentration of SPM increased significantly,and the pro-portion of fine particles originating upstream increased.Naturally occurring radioactive isotopes,especially on size-fractionated par-ticles,are therefore seen as useful tracers to understand the sources and behaviors of riverine particles transported from land to sea.
基金The National Natural Sciences Foundation of China under contract Nos 40925017 and 40876054the Ministry of Science&Technology of P.R.China under contract Nos 2011CB409802 and 2001CB409703
文摘Temporal and spatial distribution of biogenic (BSi) and lithogenic (LSi) silica were studied in the Changjiang (Yangtze River) Estuary and its adjacent area. The annual average BSi and LSi concentrations were (1.714-1.79) #mol/L and (0.564-1.41) mmol/L, respectively. Both BSi and LSi were high ii~. tbe inshore ar- eas, where they received terrigenous discharge from the Changjiang, and decreased towards the offshore region. BSi and LSi were most abundant at the near bottom layer due to the high sedimentation rates and resuspension of sediment. Diatom blooms occurred in summer with high Chl a concentration in the sur- face layer, which induced that BSi in the surface layer during summer was obviously higher than that in the surface layer of other seasons. LSi concentration was maximal in autumn and spring and minimum in summer, associated with the seasonal variation of SPM values. Drifting investigation and mesocosm exper- iments were conducted during dinoflagellate bloom, aiming to understand the effect of nutrients on BSi by changing the phytoplankton composition. The results show that the low dissolved inorganic phosphorus concentration and high molar ratio of N/P (dissolved inorganic nitrogen vs. dissolved inorganic phospho- rus), were the important factors for decreasing diatom biomass in the study area, and it would subsequently decrease the BSi concentration in aquatic ecosystem.
文摘The finite element method was used to simulate the currents of Jiaozhou Bay and the nearcoast areas, and then established the model of the transport and diffusion of suspended particulate matter there. The transport and diffusion of dredged matter near the discharging field were estimated; and the results were used to analyze the effects of the suspended particulate matter on the marine environment.
基金supported by the National Science & Technology Major Project of China (No. 2009ZX07209004)the National Basic Research Program (973) of China (No. 2007CB407304)
文摘Sediment resuspension plays an important role in the transport and fate of heavy metals in the aquatic environment. In the present study, the release and binding forms of Cr, Cu, Zn, Pb under hydrodynamic conditions were investigated using an annular flume. Two sediments located at YLZ and GBD from Liangshui River, Beijing were resuspended for 10 hr at 0.159 and 0.267 m/see, respectively. The concentrations of suspended particulate matters of YLZ were higher than those of GBD during resuspension, indicating that the former sediment is more sensitive to the velocity. Cr in the dissolved phase stayed nearly constant at about 2.25 and 1.84 I^g/L for YLZ and GBD, respectively, due to the high percentage of its stable binding fractions in both sediments, while Cu, Zn, and Pb showed a fast release in the initial period of time. However, their concentrations in SPM generally decreased with time and were higher at the lower velocity of 0.159 m/see, which resulted from the entrainment and depressing effect of larger size particles with lower heavy metal content, commonly referred to as the "particle concentration effect". In addition, the binding form and heavy metal fractions were also found to vary during the resuspension event. A decrease in the sulphide/organic matters bounded form in GBD sediment was observed, whereas no visible changes were perceived in YLZ site samples. This phenomenon is due to the oxidation of heavy metal-sulphide binding forms, which originated from its high acid volatile sulphide content in GBD sediment.
基金financial support from the National Natural Science Foundation of China(Nos.41773072,21407014)。
文摘As organic pollutants of emerging concern,organophosphate esters(OPEs)have shown toxicity to organisms after entering the water environment.However,research on OPEs in freshwater in Southwest China is very limited.The levels,distribution and partitioning behavior of OPEs in the Minjiang River and their influencing factors is still unknown.In this study,six OPEs,tri-n-butyl phosphate(Tn BP),tri(2-chloroethyl)-phosphate(TCEP),trichloropropyl phosphate(TCPP),triphenyl phosphate(TPh P),tributoxyethyl phosphate(TBEP),and tris(2-ethylhexyl)-phosphate(TEHP),were determined in surface water,suspended particle matter(SPM)and sediments of the Minjiang River.The results showed that the average concentrations of∑_(6)OPEs in surface water,SPM and sediments of the Minjiang River were 199.32±124.95 ng/L,38463.79±45641.89 ng/g dry weight(dw)and 76.45±28.00 ng/g dw,respectively.High concentrations of OPEs were detected in SPM samples,indicating that more attention should be paid to pollution in SPM.It is worth noting that the variation trend of OPEs in SPM was almost opposite to that in water but basically similar to that in sediment.The proportions of alkyl OPEs in∑_(6)OPEs increased from surface water to SPM and sediments.Alkyl OPEs were the main pollutants in SPM(10.44%–80.88%of∑_(6)OPEs,mean of 54.52%)and sediments(59.08%–81.30%of∑_(6)OPEs,mean of 68.91%),whereas chlorinated OPEs were the most abundant components in surface water(43.16%–75.99%ofδ∑_(6)OPEs,mean of 55.50%).The water-sediment partition coefficient(logKOC)of OPEs was 4.97–7.58,while the water-SPM partition coefficient was 6.71–10.00.No significant correlations were found between log KOW and logKOC.KOW was not the main factor affecting the distribution of OPEs in the Minjiang River,China.
基金The National Basic Research Program of China under contract No. 2010CB428901the National Natural Science Foundation of China under contract Nos 40206017 and 40925017Basic Research Program of Science and Technology of the Ministry of Education under contract No. 108081
文摘Dissolved inorganic phosphorus (DIP ),dissolved organic phosphorus (DOP ),particulate inorganic phosphorus (P IP ) and particulate organic phosphorus (P OP ) in the Jiaozhou Bay (JZB) and its adjacent major rivers were analyzed during 2001–2003.DIP was the major form of dissolved phosphorus in JZB,representing 62%–83% of the total dissolved phosphorus (T DP ),and the P IP concentration generally exceeded the P OP concentration.The concentrations of phosphorus were higher in the north than in the south of the bay,which were related to the fluvial input and water exchange rate.The dissolved phosphorus concentrations were higher in the autumn and spring than in the summer,while the seasonal variation of particulate phosphorus showed opposite pattern.The distribution of phosphorus is mainly affected by the growth of phytoplankton,desorption/adsorption of DIP from and to particulates,and anthropogenic activities.A preliminary phosphorus budget was established.In JZB,riverine input and water exchange flow between JZB and the Huanghai (Yellow) Sea are the major sources of phosphorus,followed by industrial and domestic waste transport,and then atmospheric deposition.Phosphorus burial efficiency is estimated to be 91%.About 52.2 × 10 6 mol/a of phosphorus were assimilated by phytoplankton,of which about 68% was recycled in the water column and sediment.
基金The National Basic Research Program of China under contract No.2010CB428704the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA11020304+1 种基金the National Natural Science Foundation of China under contract No.41276083the Scientific Research Fund of the Second Institute of Oceanography of the State Oceanic Administration of China under contract No.JG1415
文摘Massive green tides caused by Ulva prolifera in the Yellow Sea have occurred every summer since 2007 and have caused huge economic losses for local governments. The Subei (North liangsu Province, China) Shoal, with its large-scale Porphyra aquaculture, has been regarded as the most important source of U. prolifera for green tides. To reveal the physical mechanisms of floating and drifting algae in this area, the characteristics of the current, the temperature, the salinity and suspended particulate matter (SPM) in the southwestern Yellow Sea, especially in the Subei Shoal, were studied. The topography of the radial sand ridges in the Subei Shoal constrains the features of the currents and causes net longitudinal and latitudinal movements. The longitudinal net movement is a dominant dynamic factor that can bring U. prolifera into offshore waters. The amount of gas that is produced by algae during photosynthesis determines whether U. prolifera can float well on the sea surface after it is disposed into the water from Porphyra aquacultural apparatus. The Subei Shoal is characterized by a high turbidity, which can result in significant light attenuation and affect the photosynthesis together with the buoyancy of a U. prolifera in the water. According to satellite remote sensing data from 2012, the three-month-averaged surface SPM (April, May and June) in the Subei Shoal was 140 mg/dm^3, and the north of the Subei Shoal (the north of 34.5°N), it was 11 mg/dm^3. According to the monthly averaged surface SPM in April, the transparency in the Subei Shoal was only 0.1 m, but it often exceeded 2.0 m outside of the Subei Shoal. The results explain why the floating ability of U. prolifera increases significantly once the green algae drifted outside the Subei Shoal.
基金Supported by National Natural Science Foundation of China for Creative Research Groups(No.41121064) and NSFC(No.41176138)the Program from Three Gorges Engineering Construction Committee of the State Council,China(No.SX2004-010)
文摘Based on the principle of conservative matter removal in estuary,a new method is proposed for estimating the ratio of sediment resuspension in estuaries with fine suspended sediments in the turbidity maximum zone(TMZ) of the Changjiang(Yangtze) estuary during 2005.Results show that there was a range of 18.7%±27.9% to 73.9%±22.5% per annum of total suspended particulate matter(SPM),with an average of 49.2%.Nearly half of the particulate matter in the TMZ originates from sediment resuspension.This indicates that sediment resuspension is one of the major mechanisms involved in formation of the TMZ.Compared with traditional method for calculating these ratios in the estuary,this new method evaluates the dynamic variation of SPM content carried by river runoff from the river mouth to the ocean.The new method produced more reliable results than the traditional one and could produce a better estimation of resuspension flux for particulate matter in estuaries.
文摘The Isonzo River has been demonstrated to be a continuing point source of mercury(Hg)in the Gulf of Trieste although the Idrija mine was last active in 1996. The present study aims to investigate the role of the suspended particulate matter(SPM) associated with tidal fluxes to disperse particulate Hg(PHg) into the Grado coastal lagoon system. PHg concentrations(avg. 3.11 ± 2.62 μg/g, d.w.), notwithstanding the ebb or flood tides, were significantly higher than the local sediment background(0.13 μg/g). The relative affinity of Hg for the particulate phase in surface waters was confirmed by higher average distribution coefficient(Kd) values(5.6–6.7). PHg contents showed the highest values in ebb tide conditions, thus suggesting their origin from the erosion of tidal flats and saltmarshes of the lagoon. When compared to river discharge, high PHg surface concentrations in flood tide are related to rainfall events occurring within the river basin. Results can be used to make an indicative assessment of the amount of Hg bound to SPM which is transported in and out of the lagoon basin following the action of tidal fluxes. A simple estimation provides a negative budget for the Grado lagoon sub-basin which loses between 0.14 and 1.16 kg of PHg during a tidal semi-cycle. This conclusion is in agreement with the evidence of morphological deterioration which has emerged from recent studies on the lagoon environment, and which testifies to a current sedimentary loss from the lagoon into the northern Adriatic Sea.
文摘ENVISAT/MERIS scenes of Lake Guiers covering the period 2003-2010 were processed for concentration retrieval of chlorophyll a (CHLa), suspended particulate matter (SPM) and colored fraction of dissolved organic matter (CDOM), i.e. the three main parameters relevant to the water quality management of the lake. Estimates in the range of 30 - 117 μg CHLa L<sup>-1</sup> (average 62.13 μg·L<sup>-1</sup>), 0.10 - 29.0 mg SPM L<sup>-1</sup> (average 22.01 mg·L<sup>-1</sup>), and 1.10 - 1.90 CDOM m<sup>-1</sup> (average 1.33 m<sup>-1</sup>) were recorded, suggesting the possibility of occasional poor quality waters in some compartments of the lake. The values calculated as part of this study are consistent with literature data. On the basis of these estimates, interpretations were made as to the feasibility of applying MERIS data for synoptic environmental monitoring purposes. The data were subjected to statistical analysis, including regression analysis and significance tests. Estimates of CHLa and CDOM revealed some level of correlation, which suggests that phytoplankton biomass degradation may account for nearly 47% of the dissolved optical compounds CDOM. Notable areas of high CHLa and CDOM concentrations are found in the southern inshore zone, an environment with less water agitation. In contrast, SPM concentrations tend to increase in environments of very shallow water marked by high water turbulence and bottom mobility. However, it was not possible to fully assess the model performance and detection accuracy of the results due to lack of ground truths. Nonetheless, the results show concentrations that compared well with the insitu data from earlier studies and data reported elsewhere from other lacustrine systems. Therefore, it can be inferred from this study that MERIS data present a useful low-cost (i.e. cost effective and readily available) approach for environmental monitoring of Lake Guiers waters with excellent spatial coverage. In addition, the study highlighted the minimal effect of the so-called “bottom effect” on model predictions, despite the small depth of the lake.
基金the research project on the Management of Point Calimere wetland funded by Ministry of Environment and Forests,Government of India
文摘Results are presented of the longitudinal and vertical profiling of salinity and suspended particulate matter(SPM) at the Muthupet estuary, India, during a one year period under widely varying freshwater flow conditions. Freshwater flow was available during post-monsoon and monsoon. An up-estuary shift in the location of estuarine turbidity maxima(ETM) was observed during the transition from post-monsoon to pre-monsoon and further it shifted downstream during the transition from pre-monsoon to monsoon, thereby exhibiting a pronounced seasonal cycle. The salinity intrusion was dependent on the freshwater discharge and was expressed as a power function of freshwater flow, explaining 97% of the variance. The formation of a salt plug in Muthupet estuary and its seasonal dynamics were observed, which is not an identified feature of any of the Indian estuaries studied so far. The geographical positions of salt plug and ETM core were more or less the same during their formation. The occurrence of two ETM during the LW of post-monsoon and the absence of ETM during monsoon explains the strong seasonal variation in the formation of ETM. The primary factor affecting the formation of ETM was identified as the freshwater flow over an annual cycle; the resuspension of sediments by tidal current affecting the formation on a flood/ebb cycle was secondary. The extent of shift of ETM was found to be an inverse logarithmic function of the freshwater discharge. The separation between ETM intrusion and salinity intrusion increased two fold with the increase in ETM intrusion.
基金supported by the National Basic Research Program(973) of China(No.2008CB418203)
文摘Phosphorous (P) fraction characteristics in sediment resuspension were investigated under adequately hydrodynamic conditions. Four forms of P in overlying water, including dissolved inorganic P, dissolved total P, total P, and particulate P, and six fractions of P in suspended particulate matter (SPM), including loosely sorbed P (NH4Cl-P), redox-sensitive P (BD-P), aluminum-bound P (Al- P), organic P (NaOH-nrP), calcium-bound P (Ca-P) and residual P (Res-P), were quantified, respectively. Different hydrodynamic conditions resulted in different P form changes. Four states could be ascribed: (1) P desorption by sediment and SPM, and P adsorption by overlying water; (2) P desorption by SPM, and P adsorption by overlying water; (3) P adsorption by SPM, and P desorption by overlying water; and (4) P equilibrium between SPM and overlying water. The contents of P in overlying water acquired peak values in the middle position of the vertical P distribution due to the combined actions of SPM and sediment. P fractions in SPM were in the following order: BD-P 〉 NaOH-nrp 〉 Ca-P 〉 Al-P 〉 Res-P 〉 NH4Cl-P. BD-P in SPM frequently exchanged with P forms in overlying water. Resuspension was favorable to forming Ca-P in SPM.