Based on a detailed environmental investigation of the whole Qingshui Stream catchments,samples of water and surface sediments were collected at 15 different places from the upper to the lower reaches of Qingshui Stre...Based on a detailed environmental investigation of the whole Qingshui Stream catchments,samples of water and surface sediments were collected at 15 different places from the upper to the lower reaches of Qingshui Stream,and samples of suspended matter were obtained by filtrating the water samples. The concentrations of heavy metals (Cd,Cu and Zn) were measured in filtered water,suspended matter,and surface sediment by ICP-AES. The results show that the concentrations of the three heavy metals in filtered water are 0.18,6.6 and 17.67 μg/L,lower than that of the Fresh Water Quality Criteria (US EPA) and those of the plain urban rivers,but the contents of Cd,Cu and Zn are much higher than the mean values of rivers in the world and the background value in Jialing River basin. The heavy metals concentrations in the suspended matter from Qingshui Stream are 2.08,438.14 and 1 348.05 mg/kg,much higher than the corresponding background values of soils in Chongqing city. The heavy metals concentrations in the surface sediment from Qingshui Stream are 0.84,189.75 and 838.23 mg/kg,and the values of index of geoaccumulation Igeo of Cd,Cu and Zn show that their pollution degrees are moderate. The heavy metals exist in three transferable forms such as water,suspended matter and surface sediment in Qingshui Stream. The heavy metals concentrations in water are the lowest,and those in the suspended matter are the highest,so the ecological risk in suspended matter is the highest. The distribution tendencies of three metals in water,suspended matter and surface sediment in main riverbed are different.展开更多
The organic matter in tropospheric aerosol plays an important role in atmospheric physical and chemical processes. The bulk of organic matter, representing a significant proportion of the total suspended particulate ...The organic matter in tropospheric aerosol plays an important role in atmospheric physical and chemical processes. The bulk of organic matter, representing a significant proportion of the total suspended particulate (TSP) mass, is bound to polymeric material whose structure and properties are largely unknown. Here we used thermodesorption gas chromatography/mass spectrometry (Td-GC/MS) to study organic compounds of low molecular mass and pyrolysis gas chromatography/mass spectrometry (Py-GC/MS) to characterize the chemical structure of macromolecules in TSP samples collected in different seasons from different sites in Guangzhou. n-Alkanes, fatty acids and nitriles were the predominant compounds in the thermodesorption products, whereas aromatics, fatty acids, nitriles and n-alkanes/alkenes were the major compounds in the pyrolysates. The results indicated that aromatics were main units in macromolecules. The fatty acids and nltriles formed from carboxylic ammonium salts were detected in both thermodesorption products and pyrolysates at a certain concentration, indicating the importance of these compounds in TSP formation. The TSP source mainly determined the occurrence of compounds in samples from urban, suburban and forest sites, whereas the TSP source and formation process maybe controlled the seasonal variation in compounds detected. High levels of nitriles in summer samples from suburban and forest sites coincide with the release of ammonium from the land and of fatty acids from vegetation at these sites.展开更多
Fine particles in seawater commonly form large porous aggregates. Aggregate density and settling velocity determine the behavior of this suspended particulate matter(SPM) within the water column.However, few studies o...Fine particles in seawater commonly form large porous aggregates. Aggregate density and settling velocity determine the behavior of this suspended particulate matter(SPM) within the water column.However, few studies of aggregate particles over a continental shelf have been undertaken. In our case study, properties of aggregate particles, including size and composition, over the continental shelf of the North Yellow Sea were investigated. During a scienti?c cruise in July 2016, in situ ef fective particle size distributions of SPM at 10 stations were measured, while temperature and turbidity measurements and samples of water were obtained from surface, middle, and bottom layers. Dispersed and inorganic particle size distributions were determined in the laboratory. The in situ SPM was divided into(1) small particles(<32 μm),(2) medium particles(32–256 μm) and(3) large particles(>256 μm). Large particles and medium particles dominated the total volume concentrations(VCs) of in situ SPM. After dispersion, the VCs of medium particles decreased to low values(<0.1 μL/L). The VCs of large particles in the surface and middle layers also decreased markedly, although they had higher peak values(0.1–1 μL/L). This suggests that almost all in situ medium particles and some large particles were aggregated, while other large particles were single particles. Correlation analysis showed that primary particles <32 μm in?uenced the formation of these aggregates. Microscopic examination revealed that these aggregates consisted of both organic and inorganic ?ne particles, while large particles were mucus-bound organic aggregates or individual plankton.The vertical distribution of coarser particles was clearly related to water strati?cation. Generally, medium aggregate particles were dominant in SPM of the bottom layer. A thermocline blocked resuspension of?ne material into upper layers, yielding low VCs of medium-sized aggregate particles in the surface layer.Abundant large biogenic particles were present in both surface and middle layers.展开更多
Water temperature,turbidity,chlorophyll-a and suspended sediment concentration (SSC) were investigated at 61 stations of eight sections in the southern Huanghai Sea (HS) and the East China Sea (ECS) during the s...Water temperature,turbidity,chlorophyll-a and suspended sediment concentration (SSC) were investigated at 61 stations of eight sections in the southern Huanghai Sea (HS) and the East China Sea (ECS) during the summer (28 June to 15 July) of 2006.The horizontal distribution of suspended parti culate matter (SPM) displayed a high concentration inshore and a low value offshore.The maximum value can reach 10.4 mg/dm 3,which can be found at the Changjiang River mouth.For the same site,the SSC was generally higher at the bottom than on the surface.In the vertical direction,distribution characteristics of turbidity can be divided into two types:in the southern HS high values at the bottom while low values on the surface,and in the ECS high values inshore with low values offshore.The thermocline in the HS and the Taiwan Warm Current in the ECS could be important factors preventing the SPM from diffusing upward and seaward.Even the typhoon Ewiniar was not able to work on the major sediment transport under the thermocline during the observation.展开更多
Ths study on the physico-geograpical environment of Erhai Lake focused on the suspended matter and recent deposition rates, 14 C, 210 Pb and 137 Cs methods were used to determine the ageand sedimentation rate, which w...Ths study on the physico-geograpical environment of Erhai Lake focused on the suspended matter and recent deposition rates, 14 C, 210 Pb and 137 Cs methods were used to determine the ageand sedimentation rate, which was found to be 0.5 t0 2.0 mm/a, average of 0.9 mm/a. The authors calculated the budget of some elements by studying the deposition, and fuUnd that about 30% of nitrogen,and most of the phosphorous, were transported into the lake by the ediments.展开更多
Suspended matter (SM) in the East China Sea (ECS) shelf seawater was investigated during Oct. 1993, Apr. and Oct. 1994. Results showed that the high total suspended matter(TSM) region (>7200)mg/L) was limted to nea...Suspended matter (SM) in the East China Sea (ECS) shelf seawater was investigated during Oct. 1993, Apr. and Oct. 1994. Results showed that the high total suspended matter(TSM) region (>7200)mg/L) was limted to near the estuary and reduced rapidly to <10 mg/L at 122 °30’E. The high TSM contour extended mainly NE in surface water but SE in near bottom Water,i. e., SM transport from the Changjiang River was characterized by "stratification and different transport directions in different layers’. TSM distribution on sections showed that the up-climbing Kuroshio water prevents Changjiang River SM in middle and bottom water from transporting to the Okinawa Trough. Vertical distributions of the TSM showed a suspended-cline that appeared in the inner and middle shelf TSM below it was dense and formed a turbid water laper, TSM above it was less dense, so the water was reatively clear. Formation of the suspended-cline correlated with high density current and resuspension of bottom sediment.展开更多
POM was used to study the monthly mean circulation in the Yellow Sea and East China Sea. The calculated results showed almost all major characteristics of the circulation system. The calculated circulation system and ...POM was used to study the monthly mean circulation in the Yellow Sea and East China Sea. The calculated results showed almost all major characteristics of the circulation system. The calculated circulation system and observational data were used to determine the sediment concentration, volume transport, heat flux and suspended matter flux between the Yellow Sea and the East China Sea. The conclusions obtained were that the volume and heat are transported northward through the 32°N section during each season; that in winter and autumn, total suspended matter is transported southward, and is larger in winter than in autumn. The reason is that the Yellow Sea Coastal Current is strong and always contains more suspend matter in winter and autumn. The seasonal suspended matter exchange between the Yellow Sea and the East China Sea are 0.58×10 7 tons in spring, 2.81×10 7 tons in summer, -2.60×10 7 tons in autumn and -3.40×10 7 tons in winter. Net flux of suspended matter from the Yellow Sea to the East China Sea is 2.61×10 7 tons every year.展开更多
Based on the observed surface suspended matter in the East China Sea in February 2007 and June 2015, an empirical model was established using L1 b's band 4 data to retrieve surface suspended matter from the Modera...Based on the observed surface suspended matter in the East China Sea in February 2007 and June 2015, an empirical model was established using L1 b's band 4 data to retrieve surface suspended matter from the Moderate Resolution Imagine Spectroradiometer Terra imagery. The squared correlation coefficient is 0.8358, and the root mean square error is 0.4285 mg L-1. The model reflects the distribution characteristics of surface suspended matter in the inner shelf of the East China Sea. In this paper, the satellite images of the study area were retrieved in January from 2001 to 2015, and the monthly distribution of surface suspended matter were obtained. The inter-annual distribution of the study area is similar, and the concentration of surface suspended matter is higher near the shore than offshore. A large amount of surface suspended matter is transported southeast under the influence of Zhejiang and Fujian coastal current and Taiwan warm current. Only a small amount of surface suspension can reach the Kuroshio area. The surface suspended matter concentration changes obviously near the estuary because of the effect of differences in the flux of the Yangtze River. Meanwhile, winter monsoon, temperature front, El Ni?o events, and other factors affect the distribution of surface suspended matter in 100 m isobath to coastal water but minimally influence the distribution in 100 m isobath to deep sea.展开更多
Samples taken from the Chukchi Sea (CS) during the 4th Chinese National Arctic Research Expedition, 2010, were analyzed to determine the content and composition of suspended particulate matter (SPM) to improve our...Samples taken from the Chukchi Sea (CS) during the 4th Chinese National Arctic Research Expedition, 2010, were analyzed to determine the content and composition of suspended particulate matter (SPM) to improve our understanding of the distribution, sources and control factors of the SPM there. The results show that the SPM in the water column is highest in the middle and near the bottom in the south and central-north CS, followed by that off the Alaskan coast and in Barrow Canyon. The SPM content is lowest in the central CS. Scanning electron microscope (SEM) analysis shows that the SPM in the south and central-north CS is composed mainly of diatoms, but the dominant species in those two areas are different. The SPM off the Alaskan coast and in Barrow Canyon is composed mainly of terrigenous material with few bio-skeletal clasts. The distribution of temperature and salinity and the correlation between diatom species in SPM indicate that the diatom dominant SPM in the south CS is from the Pacific Ocean via the Bering Strait in summer. The diatom dominant SPM in the central-north CS is also from Pacific water, which reaches the CS in winter. The SPM in the middle and near the bottom of the water column off the Alaskan coast and in Barrow Canyon is from Alaskan coastal water and terrigenous material transported by rivers in Alaska.展开更多
Suspended particulate matter(SPM) has been known as an important variable in the organic matter flow of coastal ecosystem. Half of burial carbon in seagrass meadows is contributed by allochthonous sources that compose...Suspended particulate matter(SPM) has been known as an important variable in the organic matter flow of coastal ecosystem. Half of burial carbon in seagrass meadows is contributed by allochthonous sources that compose the SPM such as phytoplankton, seagrass detritus, marine snow aggregates and terrestrially derived particles. Each composition of the SPM contributes different roles and is important to be identified, for instance,the exact contribution of seagrass detritus will be useful for determination of carbon export through the detritus form in seagrass meadows. Here, the SPM of seagrass meadows is studied in Bintan Island and the Selayar Archipelago. The aim of this research is to determine the source origin of the SPM using a stable isotope signature.In order to fulfill this aim, the objectives are defined as:(1) to specify the stable isotope signature(δ13C and δ15N)of the SPM, and(2) to determine the proportional distribution of the SPM's prospectus sources. The result shows that the possibility of the source origin of the SPM includes a seagrass fraction(Enhalus acoroides and Thalassia hemprichii), terrestrial C4 plant, macroalgae, and terrestrial C3 plant. The SPM lies between the marine-and terrigenous-end members. However, it seems that the SPM is more to be terrigenous-end and allochthonous.According to a Bayesian mixing model, the terrestrial C4 has the highest contribution of the SPM at all sites except Barugaia and Pasi Island in Selayar(i.e., the highest contribution of the SPM is from the detritus of E. acoroides).The second contribution has been contributed by either seagrass detritus(E. acoroides or Th. hemprichii) or terrestrial C3 plant. The finding of this study indicates that there is a strong influence of the terrigenous sources in the SPM of the seagrass meadows.展开更多
Although remote sensing data have been used to estimate total suspended matter (TSM) in coastal waters, it has limitations when applied to estuary waters in low spatial resolution situations. The spatial resolution ...Although remote sensing data have been used to estimate total suspended matter (TSM) in coastal waters, it has limitations when applied to estuary waters in low spatial resolution situations. The spatial resolution of ocean color satellites such as SeaWiFS and MODIS is usually -1 km, and therefore is not adequate for small, local-scale areas such as the Zhujiang (Pearl) River estuary. In contrast, 30 m-resolution EO-1 Hyperion imagery has potential for studying TSM in localized areas. We measured the surface spectral radiance reflectance of the river estuary water in the visible and near infra-red spectral range. Sensitivity analysis indicated that the ratio of remote sensing reflectance at 813 nm (Rrs(813)) to reflectance at 559 nm (Rrs(559)) could be used to estimate TSM concentration, and a linear relationship was established between the ratio and in-situ TSM concentration. We applied the linear relationship to Hyperion imagery to map TSM concentration in the estuary. The Hyperion imagery provided sufficient spatial resolution to detect spatiotemporal changes in TSM concentrations in the estuary small estuary area. This study demonstrated the usefulness of Hyperion imagery for mapping the distribution of TSM in estuary waters. Keyword: Hyperion; total suspended matter (TSM); Zhujiang (Pearl) River estuary展开更多
Continuous data of aerosol optical thickness monitored using differential optical absorption spectroscopy (DOAS) are correlated with the concentration of ground-measured suspended particulate matter (SPM). A high ...Continuous data of aerosol optical thickness monitored using differential optical absorption spectroscopy (DOAS) are correlated with the concentration of ground-measured suspended particulate matter (SPM). A high correlation is found between the DOAS and the ground SPM data, making it possible to calculate the mass extinction efficiency of the aerosols in the atmosphere. It is found that the value of mean mass extinction efficiency (MEE) varies over a range of 2.6-13.7 m^2 g^-1, with smaller and larger values occurring for size distributions dominated by coarse and fine particles, respectively.展开更多
The grain-size of suspended particulate matter (SPM) in the Huanghe Estuary and its adjacent sea area was investigated with an in situ laser particle size analyzer (LISST-100) in November 2006.The spatial distribu...The grain-size of suspended particulate matter (SPM) in the Huanghe Estuary and its adjacent sea area was investigated with an in situ laser particle size analyzer (LISST-100) in November 2006.The spatial distribution of the grain-size parameters was very complicated.The results show that (1) the mean particle size of SPM ranged from 3.00Φ to 6.41Φ,with an average value of 4.66Φ;(2) the frequency distribution patterns of the SPM grain-size showed three different types,which were mono-mode,dual-mode and tri-mode,respectively;(3) C-M chart suggested that the transportation-processes of the SPM not only included suspended mode,but also the bed load transportation mode.The bed load transportation mode mainly occurred at the bottom layer.The characteristics and space distribution of SPM grain-size might be mainly controlled by sediment discharge of the Huanghe River,hydrodynamics condition,surface sediment types,and biological process within the study area.展开更多
In order to discuss the content distributions and fluxes of heavy metals in suspended matters during a tidal cycle in the turbidity maximum around the Changjiang (Yangtze) Estuary, the contents of heavy metals (Zn,...In order to discuss the content distributions and fluxes of heavy metals in suspended matters during a tidal cycle in the turbidity maximum around the Changjiang (Yangtze) Estuary, the contents of heavy metals (Zn, Pb, Cd, Co and Ni) have been analyzed. During a tidal cycle, the average contents of heavy metals are in the order of Zn〉Ni〉Pb〉Co〉〉Cd. The average contents in ebb tide are generally higher than that in flood tide. However, at the inshore Sta. 11, influenced by the contamination from the nearby waste treatment plant, the average contents of Zn and Ni in flood tide are higher than those in ebb fide and at the offshore Sta. 10, the content of Cd in flood tide higher than that in ebb tide due to marine-derived materials. The five heavy metals, mainly terrigenous, are transported towards east-northeast, and settle down with suspended matters in the area between Sta. 11 and Sta. 10. Influenced by marine-derived materials, the flux value of Cd does not alter significantly with obviously changing in flux direction towards northwest. The source of heavy metals, the salinity of water and the concentration of suspended matters are the main factors controlling the content distributions of heavy metals during a tidal cycle. There is a positive correlation between the contents of heavy metals (Zn, Pb, Co and Ni) and the salinity of water, while the opposite correlation between the contents and the concentrations of suspended matters. Because of marine-derived materials, the content of Cd is not correlated with the concentration of suspended matters and the salinity of water.展开更多
From August to October in 2006,three times of field spectral measurements with a Field Spec FR spectroradiometer(Analytical Spectral Devices,Inc.,USA) were carried out in Shitoukoumen Reservoir,Jilin Province,Northeas...From August to October in 2006,three times of field spectral measurements with a Field Spec FR spectroradiometer(Analytical Spectral Devices,Inc.,USA) were carried out in Shitoukoumen Reservoir,Jilin Province,Northeast China. Owing to the serious soil and water loss in the upstream,reflectance curves of the reservoir were characterized by high concentrations of total suspended matter(TSM) . Extending the spectral analysis to 1200nm in the near-infrared band,this research revealed an obvious reflectance peak around 1070nm which was caused by the strong backscattering of high TSM. The method of partial least squares(PLS) regression was applied to retrieving the TSM. Reflectance in two spectral bands,i.e.,675-948nm and 1029-1105nm,were used as variables to develop PLS models. Traditional linear regression,first derivative model and logarithmic model were also used for the comparison of different models. Results showed that the PLS model based on Rrs(675) -Rrs(948) gave out best results with high precision and stability. Although the PLS model based on Rrs(1029) -Rrs(1105) did not have an outstanding performance due to lots of noise,the reflectance peak in the near-infrared band was an important TSM feature and its efficient exploitation would have a considerable significance in TSM remote sensing.展开更多
The climate variability induced by the El Nino-Southern Oscillation(ENSO)cycle drives significant changes in the physical state of the tropical Western Pacific,which has important impacts on the upper ocean carbon cyc...The climate variability induced by the El Nino-Southern Oscillation(ENSO)cycle drives significant changes in the physical state of the tropical Western Pacific,which has important impacts on the upper ocean carbon cycle.During 2015-2016,a super El Nino event occurred in the equatorial Pacific.Suspended particulate matter(SPM)data and related environmental observations in the tropical Western Pacific were obtained during two cruses in Dec.2014 and 2015,which coincided with the early and peak stages of this super El Nino event.Compared with the marine environments in the tropical Western Pacific in Dec.2014,an obviously enhanced upwelling occurred in the Mindanao Dome region;the nitrate concentration in the euphotic zone almo st tripled;and the size,mass concentration,and volume concentration of SPM obviously increased in Dec.2015.The enhanced upwelling in the Mindanao Dome region carried cold but eutrophic water upward from the deep ocean to shallow depths,even into the euphotic zone,which disrupted the previously N-limited conditions and induced a remarkable increase in phytoplankton blooms in the euphotic zone.The se results reveal the mechanism of how nutrient-limited ecosystems in the tropical Western Pacific respond to super El Nino events.In the context of the ENSO cycle,if predicted changes in biogenic particles occur,the proportion of carbon storage in the tropical Western Pacific is estimated to be increased by more than 52%,ultimately affecting the regional and possibly even global carbon cycle.This paper highlights the prospect for long-term prediction of the impact of a super El Nino event on the global carbon cycle and has profound implications for understanding El Nino events.展开更多
Anand, the milk capital of India, is a developing city with increasing vehicles and developmental activities going on at a fast pace. This study attempts to investigate the zinc and chromium concentration in street du...Anand, the milk capital of India, is a developing city with increasing vehicles and developmental activities going on at a fast pace. This study attempts to investigate the zinc and chromium concentration in street dust, suspended particulate matter and in foliar dust deposits. Ten sampling locations were selected based on the traffic density on the roads and different anthropogenic activity. Sampling was carried out in the dry months of January to March 2011. The range of Zn and Cr was 16.82 - 108.29 ppm and 118 - 151.5 ppm in the street dust respectively. Zn concentration in Suspended particulate matter lies in the range of 12.41 to 86 ppm and Cr concentration between 75 to 130 ppm. The range of Cr in foliar deposited dust varied from 79.54 ppm to 31 ppm. Whereas, for Zn maximum concentration was in S10 which is 42.34 ppm and minimum was in site S9, 23.73 ppm. ANOVA single factor showed that at 0.05 level of significance site wise variation of zinc and chromium concentration in SPM, Street dust and foliar deposited dust was not significant signifying similar source of contamination. Which is further strengthened by the good positive correlation found between the Zn and Cr concentration of street dust, leaf deposited dust and SPM. The Contamination Factor in the sites where metal concentration was high was 1.24 in S10 and 1.06 in S5 for Zn. For chromium the value of CF was 1.77 in S10 and 1.67 in S5. These values indicate that street dust is moderately contaminated with respect to zinc and chromium.展开更多
To determine the pollution levels and potential toxic risks of arsenic(As) and heavy metals(Cr, Ni, Cu, Zn, Pb and Cd) in water and suspended particulate matter(SPM) in tail reaches(including freshwater reach and low-...To determine the pollution levels and potential toxic risks of arsenic(As) and heavy metals(Cr, Ni, Cu, Zn, Pb and Cd) in water and suspended particulate matter(SPM) in tail reaches(including freshwater reach and low-salinity reach) of the Yellow River as the Flow-Sediment Regulation Project(FSRP) has been carried out for approximately 15 yr, the surface water and SPM were sampled at pre-flood(April) and post-flood seasons(October). Results showed that similar changes of As and metal levels in water and SPM were observed along the tail reaches at pre-flood or post-flood season. Compared to pre-flood season, the levels of As, Cu, Cr and Ni in freshwater reach and the concentrations of Cr and Ni in low-salinity reach rose greatly at post-flood season. The levels of As and metals in SPM of freshwater reach or low-salinity reach at pre-flood season were significantly higher than those at post-flood season(P < 0.01).The pollutions of As and metals in surface water of tail reaches at pre-flood or post-flood season were not serious. The SPM in freshwater reach at pre-flood season were polluted by Cd, As, Cr, Cu and Ni while those in low-salinity reach were polluted by Cd and Cr. The SPM in freshwater reach at post-flood season were polluted by Cd and Pb while those in low-salinity reach were polluted by Cd and Cr.Cd was identified as heavy metal of primary concern at both pre-flood and post-flood seasons. Combined with the existed data reported in present research, this study found that the toxic risk of As and metals in SPM of tail reaches at pre-flood season was higher than that at post-flood season, implying that the implementation of FSRP during flooding season, to a great extent, reduced the toxic risk of these elements. With the long-term implementation of FSRP, the pollution levels of As and metals(particularly for Cd) in SPM of tail reaches might be elevated and the potential toxic risk primarily produced by Cr, Ni and As might be increased if effective measures were not taken in future.展开更多
The total carbon(C) and total nitrogen(N) content of suspended matter in a small undisturbed headwater drainage basin in the New Territories of Hong Kong has been monitored. Mean C and N contents were 12.85% and 0.99%...The total carbon(C) and total nitrogen(N) content of suspended matter in a small undisturbed headwater drainage basin in the New Territories of Hong Kong has been monitored. Mean C and N contents were 12.85% and 0.99% respectively for 132 samples. Samples collected under stableflow conditions had mean C and N contents of 12.81% and 1.06% respectively. Stormflow samples had mean C and N values of 12.86% and 0.97% respectively, which were very similar to the levels observed under stableflow conditions. The mean C∶N ratios of 12.47 and 13.39 for stableflow and stormflow also reveal little difference according to hydrologic conditions. When all the data is considered little difference is observed in C and N according to the season. However, in winter there is a significant difference in C and N content between stable and stormflow samples. When C and N are plotted against water level the scattergraphs suggested that as stage increases the percentage of C and N in the suspended matter declines. Scattergraphs of C and N against suspended sediment concentration reveal a negative association. Comparison has been made between fresh leaf C, N and C/N ratio for trees and shrubs and the suspended matter. Fresh leaves do not appear to contribute significantly to suspended matter. The C/N ratio of suspended matter would also seem to exclude woody material and algae as sources of suspended matter.展开更多
The association of pollutants (nutrients, heavy metals and organic compounds) with colloidal and suspended particle matter(SPM) plays a dominant role in determining their transport, fate, biogeochemistry, bioavailabil...The association of pollutants (nutrients, heavy metals and organic compounds) with colloidal and suspended particle matter(SPM) plays a dominant role in determining their transport, fate, biogeochemistry, bioavailability and toxicity in natural waters. A scheme for the fractionation and composition of colloidal and suspended particulate matter from river waters has been tested. Sieving, continuous flow centrifugation and tangential flow filtration were used to collect gram amounts of colloidal and particulate matters. The separation scheme was able to process large samples(100L), within reasonable times(1 day) and the apparatus was portable. The aquatic colloid was also separated with high resolution, and sized using sedimentation field\|flow fractionation technique. The mass\|based particle size distribution for the river water sample showed a broad size distribution between 0\^05 and 0\^4 μm with the maximum around 0\^14 μm. There was a systematic increase in the content of organic carbon, Mg, Ca, Na, Cu and Zn with decreasing particle size, highlighting the importance of the colloidal(<1 μm) fraction.展开更多
基金Project(KLVF-2007-4) supported by Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment,Ministry of Education,Chongqing University,ChinaProject(CSTC2008CE9095) supported by Chongqing Science and Technology Commission,ChinaProject(KJ080803) supported by Chongqing Municipal Education Commission,China
文摘Based on a detailed environmental investigation of the whole Qingshui Stream catchments,samples of water and surface sediments were collected at 15 different places from the upper to the lower reaches of Qingshui Stream,and samples of suspended matter were obtained by filtrating the water samples. The concentrations of heavy metals (Cd,Cu and Zn) were measured in filtered water,suspended matter,and surface sediment by ICP-AES. The results show that the concentrations of the three heavy metals in filtered water are 0.18,6.6 and 17.67 μg/L,lower than that of the Fresh Water Quality Criteria (US EPA) and those of the plain urban rivers,but the contents of Cd,Cu and Zn are much higher than the mean values of rivers in the world and the background value in Jialing River basin. The heavy metals concentrations in the suspended matter from Qingshui Stream are 2.08,438.14 and 1 348.05 mg/kg,much higher than the corresponding background values of soils in Chongqing city. The heavy metals concentrations in the surface sediment from Qingshui Stream are 0.84,189.75 and 838.23 mg/kg,and the values of index of geoaccumulation Igeo of Cd,Cu and Zn show that their pollution degrees are moderate. The heavy metals exist in three transferable forms such as water,suspended matter and surface sediment in Qingshui Stream. The heavy metals concentrations in water are the lowest,and those in the suspended matter are the highest,so the ecological risk in suspended matter is the highest. The distribution tendencies of three metals in water,suspended matter and surface sediment in main riverbed are different.
基金supported by the National Natural Science Foundation of China (No. 40505026)the Chinese Academy of Sciences (No. KZCX2-YW-403)
文摘The organic matter in tropospheric aerosol plays an important role in atmospheric physical and chemical processes. The bulk of organic matter, representing a significant proportion of the total suspended particulate (TSP) mass, is bound to polymeric material whose structure and properties are largely unknown. Here we used thermodesorption gas chromatography/mass spectrometry (Td-GC/MS) to study organic compounds of low molecular mass and pyrolysis gas chromatography/mass spectrometry (Py-GC/MS) to characterize the chemical structure of macromolecules in TSP samples collected in different seasons from different sites in Guangzhou. n-Alkanes, fatty acids and nitriles were the predominant compounds in the thermodesorption products, whereas aromatics, fatty acids, nitriles and n-alkanes/alkenes were the major compounds in the pyrolysates. The results indicated that aromatics were main units in macromolecules. The fatty acids and nltriles formed from carboxylic ammonium salts were detected in both thermodesorption products and pyrolysates at a certain concentration, indicating the importance of these compounds in TSP formation. The TSP source mainly determined the occurrence of compounds in samples from urban, suburban and forest sites, whereas the TSP source and formation process maybe controlled the seasonal variation in compounds detected. High levels of nitriles in summer samples from suburban and forest sites coincide with the release of ammonium from the land and of fatty acids from vegetation at these sites.
基金Supported by the National Natural Science Foundation of China(No.41476045)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA11030103)
文摘Fine particles in seawater commonly form large porous aggregates. Aggregate density and settling velocity determine the behavior of this suspended particulate matter(SPM) within the water column.However, few studies of aggregate particles over a continental shelf have been undertaken. In our case study, properties of aggregate particles, including size and composition, over the continental shelf of the North Yellow Sea were investigated. During a scienti?c cruise in July 2016, in situ ef fective particle size distributions of SPM at 10 stations were measured, while temperature and turbidity measurements and samples of water were obtained from surface, middle, and bottom layers. Dispersed and inorganic particle size distributions were determined in the laboratory. The in situ SPM was divided into(1) small particles(<32 μm),(2) medium particles(32–256 μm) and(3) large particles(>256 μm). Large particles and medium particles dominated the total volume concentrations(VCs) of in situ SPM. After dispersion, the VCs of medium particles decreased to low values(<0.1 μL/L). The VCs of large particles in the surface and middle layers also decreased markedly, although they had higher peak values(0.1–1 μL/L). This suggests that almost all in situ medium particles and some large particles were aggregated, while other large particles were single particles. Correlation analysis showed that primary particles <32 μm in?uenced the formation of these aggregates. Microscopic examination revealed that these aggregates consisted of both organic and inorganic ?ne particles, while large particles were mucus-bound organic aggregates or individual plankton.The vertical distribution of coarser particles was clearly related to water strati?cation. Generally, medium aggregate particles were dominant in SPM of the bottom layer. A thermocline blocked resuspension of?ne material into upper layers, yielding low VCs of medium-sized aggregate particles in the surface layer.Abundant large biogenic particles were present in both surface and middle layers.
基金The National Natural Science Foundation Project of China "Sedimentary dynamic mechanism of the Huanghai Warm Current" under contract No.40906025the National Natural Science Foundation Project of China "Formation and development of the muddy deposition in the central south Huanghai Sea,and its relation to climate and environmental change" under contract No.41030856+1 种基金State Basic Research Program of China ("973" Program) under contract No.2005CB422304the Public Science and Technology Research Funds Projects of Ocean under contract Nos 200905001 and 201005019
文摘Water temperature,turbidity,chlorophyll-a and suspended sediment concentration (SSC) were investigated at 61 stations of eight sections in the southern Huanghai Sea (HS) and the East China Sea (ECS) during the summer (28 June to 15 July) of 2006.The horizontal distribution of suspended parti culate matter (SPM) displayed a high concentration inshore and a low value offshore.The maximum value can reach 10.4 mg/dm 3,which can be found at the Changjiang River mouth.For the same site,the SSC was generally higher at the bottom than on the surface.In the vertical direction,distribution characteristics of turbidity can be divided into two types:in the southern HS high values at the bottom while low values on the surface,and in the ECS high values inshore with low values offshore.The thermocline in the HS and the Taiwan Warm Current in the ECS could be important factors preventing the SPM from diffusing upward and seaward.Even the typhoon Ewiniar was not able to work on the major sediment transport under the thermocline during the observation.
文摘Ths study on the physico-geograpical environment of Erhai Lake focused on the suspended matter and recent deposition rates, 14 C, 210 Pb and 137 Cs methods were used to determine the ageand sedimentation rate, which was found to be 0.5 t0 2.0 mm/a, average of 0.9 mm/a. The authors calculated the budget of some elements by studying the deposition, and fuUnd that about 30% of nitrogen,and most of the phosphorous, were transported into the lake by the ediments.
文摘Suspended matter (SM) in the East China Sea (ECS) shelf seawater was investigated during Oct. 1993, Apr. and Oct. 1994. Results showed that the high total suspended matter(TSM) region (>7200)mg/L) was limted to near the estuary and reduced rapidly to <10 mg/L at 122 °30’E. The high TSM contour extended mainly NE in surface water but SE in near bottom Water,i. e., SM transport from the Changjiang River was characterized by "stratification and different transport directions in different layers’. TSM distribution on sections showed that the up-climbing Kuroshio water prevents Changjiang River SM in middle and bottom water from transporting to the Okinawa Trough. Vertical distributions of the TSM showed a suspended-cline that appeared in the inner and middle shelf TSM below it was dense and formed a turbid water laper, TSM above it was less dense, so the water was reatively clear. Formation of the suspended-cline correlated with high density current and resuspension of bottom sediment.
文摘POM was used to study the monthly mean circulation in the Yellow Sea and East China Sea. The calculated results showed almost all major characteristics of the circulation system. The calculated circulation system and observational data were used to determine the sediment concentration, volume transport, heat flux and suspended matter flux between the Yellow Sea and the East China Sea. The conclusions obtained were that the volume and heat are transported northward through the 32°N section during each season; that in winter and autumn, total suspended matter is transported southward, and is larger in winter than in autumn. The reason is that the Yellow Sea Coastal Current is strong and always contains more suspend matter in winter and autumn. The seasonal suspended matter exchange between the Yellow Sea and the East China Sea are 0.58×10 7 tons in spring, 2.81×10 7 tons in summer, -2.60×10 7 tons in autumn and -3.40×10 7 tons in winter. Net flux of suspended matter from the Yellow Sea to the East China Sea is 2.61×10 7 tons every year.
基金supported by the National Natural Science Foundation of China (Nos. 41606066 and 41476030)the Project of Taishan Scholar
文摘Based on the observed surface suspended matter in the East China Sea in February 2007 and June 2015, an empirical model was established using L1 b's band 4 data to retrieve surface suspended matter from the Moderate Resolution Imagine Spectroradiometer Terra imagery. The squared correlation coefficient is 0.8358, and the root mean square error is 0.4285 mg L-1. The model reflects the distribution characteristics of surface suspended matter in the inner shelf of the East China Sea. In this paper, the satellite images of the study area were retrieved in January from 2001 to 2015, and the monthly distribution of surface suspended matter were obtained. The inter-annual distribution of the study area is similar, and the concentration of surface suspended matter is higher near the shore than offshore. A large amount of surface suspended matter is transported southeast under the influence of Zhejiang and Fujian coastal current and Taiwan warm current. Only a small amount of surface suspension can reach the Kuroshio area. The surface suspended matter concentration changes obviously near the estuary because of the effect of differences in the flux of the Yangtze River. Meanwhile, winter monsoon, temperature front, El Ni?o events, and other factors affect the distribution of surface suspended matter in 100 m isobath to coastal water but minimally influence the distribution in 100 m isobath to deep sea.
基金supported by 4th Chinese National Arctic Research Expedition (Grant no. CHINARE-2010)Public Science and Technology Research Funds Projects of Ocean (Grant nos. 201105022-2 and 201205003)Chinese Polar Environment Comprehensive Investigation & Assessment Programms (Grant nos. CHINARE2014-03-02 and CHINARE2014-04-03-03)
文摘Samples taken from the Chukchi Sea (CS) during the 4th Chinese National Arctic Research Expedition, 2010, were analyzed to determine the content and composition of suspended particulate matter (SPM) to improve our understanding of the distribution, sources and control factors of the SPM there. The results show that the SPM in the water column is highest in the middle and near the bottom in the south and central-north CS, followed by that off the Alaskan coast and in Barrow Canyon. The SPM content is lowest in the central CS. Scanning electron microscope (SEM) analysis shows that the SPM in the south and central-north CS is composed mainly of diatoms, but the dominant species in those two areas are different. The SPM off the Alaskan coast and in Barrow Canyon is composed mainly of terrigenous material with few bio-skeletal clasts. The distribution of temperature and salinity and the correlation between diatom species in SPM indicate that the diatom dominant SPM in the south CS is from the Pacific Ocean via the Bering Strait in summer. The diatom dominant SPM in the central-north CS is also from Pacific water, which reaches the CS in winter. The SPM in the middle and near the bottom of the water column off the Alaskan coast and in Barrow Canyon is from Alaskan coastal water and terrigenous material transported by rivers in Alaska.
基金The Core Competence Research Project 2014the Research Agenda COREMAP-CTI 2015-2016the "Unggulan LIPI" Research Project 2017
文摘Suspended particulate matter(SPM) has been known as an important variable in the organic matter flow of coastal ecosystem. Half of burial carbon in seagrass meadows is contributed by allochthonous sources that compose the SPM such as phytoplankton, seagrass detritus, marine snow aggregates and terrestrially derived particles. Each composition of the SPM contributes different roles and is important to be identified, for instance,the exact contribution of seagrass detritus will be useful for determination of carbon export through the detritus form in seagrass meadows. Here, the SPM of seagrass meadows is studied in Bintan Island and the Selayar Archipelago. The aim of this research is to determine the source origin of the SPM using a stable isotope signature.In order to fulfill this aim, the objectives are defined as:(1) to specify the stable isotope signature(δ13C and δ15N)of the SPM, and(2) to determine the proportional distribution of the SPM's prospectus sources. The result shows that the possibility of the source origin of the SPM includes a seagrass fraction(Enhalus acoroides and Thalassia hemprichii), terrestrial C4 plant, macroalgae, and terrestrial C3 plant. The SPM lies between the marine-and terrigenous-end members. However, it seems that the SPM is more to be terrigenous-end and allochthonous.According to a Bayesian mixing model, the terrestrial C4 has the highest contribution of the SPM at all sites except Barugaia and Pasi Island in Selayar(i.e., the highest contribution of the SPM is from the detritus of E. acoroides).The second contribution has been contributed by either seagrass detritus(E. acoroides or Th. hemprichii) or terrestrial C3 plant. The finding of this study indicates that there is a strong influence of the terrigenous sources in the SPM of the seagrass meadows.
基金Supported by the National Natural Science Foundation of China(No. 40976106)the Science Foundation Program of Guangdong Ocean University (No. 1012339)the Open Fund of State Key Laboratory of Satellite Ocean Environment Dynamics of Second Institute of Oceanography, SOA (No. SODE1203)
文摘Although remote sensing data have been used to estimate total suspended matter (TSM) in coastal waters, it has limitations when applied to estuary waters in low spatial resolution situations. The spatial resolution of ocean color satellites such as SeaWiFS and MODIS is usually -1 km, and therefore is not adequate for small, local-scale areas such as the Zhujiang (Pearl) River estuary. In contrast, 30 m-resolution EO-1 Hyperion imagery has potential for studying TSM in localized areas. We measured the surface spectral radiance reflectance of the river estuary water in the visible and near infra-red spectral range. Sensitivity analysis indicated that the ratio of remote sensing reflectance at 813 nm (Rrs(813)) to reflectance at 559 nm (Rrs(559)) could be used to estimate TSM concentration, and a linear relationship was established between the ratio and in-situ TSM concentration. We applied the linear relationship to Hyperion imagery to map TSM concentration in the estuary. The Hyperion imagery provided sufficient spatial resolution to detect spatiotemporal changes in TSM concentrations in the estuary small estuary area. This study demonstrated the usefulness of Hyperion imagery for mapping the distribution of TSM in estuary waters. Keyword: Hyperion; total suspended matter (TSM); Zhujiang (Pearl) River estuary
文摘Continuous data of aerosol optical thickness monitored using differential optical absorption spectroscopy (DOAS) are correlated with the concentration of ground-measured suspended particulate matter (SPM). A high correlation is found between the DOAS and the ground SPM data, making it possible to calculate the mass extinction efficiency of the aerosols in the atmosphere. It is found that the value of mean mass extinction efficiency (MEE) varies over a range of 2.6-13.7 m^2 g^-1, with smaller and larger values occurring for size distributions dominated by coarse and fine particles, respectively.
基金The Ministry of Science and Technology of China under contract No. 2005CB422304the National Natural Science Foundation of China under contract No. 40976020
文摘The grain-size of suspended particulate matter (SPM) in the Huanghe Estuary and its adjacent sea area was investigated with an in situ laser particle size analyzer (LISST-100) in November 2006.The spatial distribution of the grain-size parameters was very complicated.The results show that (1) the mean particle size of SPM ranged from 3.00Φ to 6.41Φ,with an average value of 4.66Φ;(2) the frequency distribution patterns of the SPM grain-size showed three different types,which were mono-mode,dual-mode and tri-mode,respectively;(3) C-M chart suggested that the transportation-processes of the SPM not only included suspended mode,but also the bed load transportation mode.The bed load transportation mode mainly occurred at the bottom layer.The characteristics and space distribution of SPM grain-size might be mainly controlled by sediment discharge of the Huanghe River,hydrodynamics condition,surface sediment types,and biological process within the study area.
基金The National Natural Science Foundation of China under contract No.41076022the National Basic Research Program(973Program)of China under contract No.2002CB412400
文摘In order to discuss the content distributions and fluxes of heavy metals in suspended matters during a tidal cycle in the turbidity maximum around the Changjiang (Yangtze) Estuary, the contents of heavy metals (Zn, Pb, Cd, Co and Ni) have been analyzed. During a tidal cycle, the average contents of heavy metals are in the order of Zn〉Ni〉Pb〉Co〉〉Cd. The average contents in ebb tide are generally higher than that in flood tide. However, at the inshore Sta. 11, influenced by the contamination from the nearby waste treatment plant, the average contents of Zn and Ni in flood tide are higher than those in ebb fide and at the offshore Sta. 10, the content of Cd in flood tide higher than that in ebb tide due to marine-derived materials. The five heavy metals, mainly terrigenous, are transported towards east-northeast, and settle down with suspended matters in the area between Sta. 11 and Sta. 10. Influenced by marine-derived materials, the flux value of Cd does not alter significantly with obviously changing in flux direction towards northwest. The source of heavy metals, the salinity of water and the concentration of suspended matters are the main factors controlling the content distributions of heavy metals during a tidal cycle. There is a positive correlation between the contents of heavy metals (Zn, Pb, Co and Ni) and the salinity of water, while the opposite correlation between the contents and the concentrations of suspended matters. Because of marine-derived materials, the content of Cd is not correlated with the concentration of suspended matters and the salinity of water.
基金Under the auspices of the Scientific Cooperation Project between Chinese Academy of Sciences and Jilin Province (No.K09P13)project of "Spring of Northeast China", Chinese Academy of Sciences (No. C08K23)
文摘From August to October in 2006,three times of field spectral measurements with a Field Spec FR spectroradiometer(Analytical Spectral Devices,Inc.,USA) were carried out in Shitoukoumen Reservoir,Jilin Province,Northeast China. Owing to the serious soil and water loss in the upstream,reflectance curves of the reservoir were characterized by high concentrations of total suspended matter(TSM) . Extending the spectral analysis to 1200nm in the near-infrared band,this research revealed an obvious reflectance peak around 1070nm which was caused by the strong backscattering of high TSM. The method of partial least squares(PLS) regression was applied to retrieving the TSM. Reflectance in two spectral bands,i.e.,675-948nm and 1029-1105nm,were used as variables to develop PLS models. Traditional linear regression,first derivative model and logarithmic model were also used for the comparison of different models. Results showed that the PLS model based on Rrs(675) -Rrs(948) gave out best results with high precision and stability. Although the PLS model based on Rrs(1029) -Rrs(1105) did not have an outstanding performance due to lots of noise,the reflectance peak in the near-infrared band was an important TSM feature and its efficient exploitation would have a considerable significance in TSM remote sensing.
基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Nos.XDB42010203,XDA19060401,XDA23050503)the Science&Technology Basic Resources Investigation Program of China(No.2017FY100802)+1 种基金the Open Fund for Key Laboratory of Mar.Geol.and Environment,Institute of Oceanology,Chinese Academy of Sciences(No.MGE2019KG03)the Qingdao(Laoshan)Postdoctoral Applied Research Proj ect in 2019(No.Y9KY161)。
文摘The climate variability induced by the El Nino-Southern Oscillation(ENSO)cycle drives significant changes in the physical state of the tropical Western Pacific,which has important impacts on the upper ocean carbon cycle.During 2015-2016,a super El Nino event occurred in the equatorial Pacific.Suspended particulate matter(SPM)data and related environmental observations in the tropical Western Pacific were obtained during two cruses in Dec.2014 and 2015,which coincided with the early and peak stages of this super El Nino event.Compared with the marine environments in the tropical Western Pacific in Dec.2014,an obviously enhanced upwelling occurred in the Mindanao Dome region;the nitrate concentration in the euphotic zone almo st tripled;and the size,mass concentration,and volume concentration of SPM obviously increased in Dec.2015.The enhanced upwelling in the Mindanao Dome region carried cold but eutrophic water upward from the deep ocean to shallow depths,even into the euphotic zone,which disrupted the previously N-limited conditions and induced a remarkable increase in phytoplankton blooms in the euphotic zone.The se results reveal the mechanism of how nutrient-limited ecosystems in the tropical Western Pacific respond to super El Nino events.In the context of the ENSO cycle,if predicted changes in biogenic particles occur,the proportion of carbon storage in the tropical Western Pacific is estimated to be increased by more than 52%,ultimately affecting the regional and possibly even global carbon cycle.This paper highlights the prospect for long-term prediction of the impact of a super El Nino event on the global carbon cycle and has profound implications for understanding El Nino events.
文摘Anand, the milk capital of India, is a developing city with increasing vehicles and developmental activities going on at a fast pace. This study attempts to investigate the zinc and chromium concentration in street dust, suspended particulate matter and in foliar dust deposits. Ten sampling locations were selected based on the traffic density on the roads and different anthropogenic activity. Sampling was carried out in the dry months of January to March 2011. The range of Zn and Cr was 16.82 - 108.29 ppm and 118 - 151.5 ppm in the street dust respectively. Zn concentration in Suspended particulate matter lies in the range of 12.41 to 86 ppm and Cr concentration between 75 to 130 ppm. The range of Cr in foliar deposited dust varied from 79.54 ppm to 31 ppm. Whereas, for Zn maximum concentration was in S10 which is 42.34 ppm and minimum was in site S9, 23.73 ppm. ANOVA single factor showed that at 0.05 level of significance site wise variation of zinc and chromium concentration in SPM, Street dust and foliar deposited dust was not significant signifying similar source of contamination. Which is further strengthened by the good positive correlation found between the Zn and Cr concentration of street dust, leaf deposited dust and SPM. The Contamination Factor in the sites where metal concentration was high was 1.24 in S10 and 1.06 in S5 for Zn. For chromium the value of CF was 1.77 in S10 and 1.67 in S5. These values indicate that street dust is moderately contaminated with respect to zinc and chromium.
基金Under the auspices of National Natural Science Foundation of China(No.41971128,41371104)the Award Program for Min River Scholar in Fujian Province(No.Min 201531)。
文摘To determine the pollution levels and potential toxic risks of arsenic(As) and heavy metals(Cr, Ni, Cu, Zn, Pb and Cd) in water and suspended particulate matter(SPM) in tail reaches(including freshwater reach and low-salinity reach) of the Yellow River as the Flow-Sediment Regulation Project(FSRP) has been carried out for approximately 15 yr, the surface water and SPM were sampled at pre-flood(April) and post-flood seasons(October). Results showed that similar changes of As and metal levels in water and SPM were observed along the tail reaches at pre-flood or post-flood season. Compared to pre-flood season, the levels of As, Cu, Cr and Ni in freshwater reach and the concentrations of Cr and Ni in low-salinity reach rose greatly at post-flood season. The levels of As and metals in SPM of freshwater reach or low-salinity reach at pre-flood season were significantly higher than those at post-flood season(P < 0.01).The pollutions of As and metals in surface water of tail reaches at pre-flood or post-flood season were not serious. The SPM in freshwater reach at pre-flood season were polluted by Cd, As, Cr, Cu and Ni while those in low-salinity reach were polluted by Cd and Cr. The SPM in freshwater reach at post-flood season were polluted by Cd and Pb while those in low-salinity reach were polluted by Cd and Cr.Cd was identified as heavy metal of primary concern at both pre-flood and post-flood seasons. Combined with the existed data reported in present research, this study found that the toxic risk of As and metals in SPM of tail reaches at pre-flood season was higher than that at post-flood season, implying that the implementation of FSRP during flooding season, to a great extent, reduced the toxic risk of these elements. With the long-term implementation of FSRP, the pollution levels of As and metals(particularly for Cd) in SPM of tail reaches might be elevated and the potential toxic risk primarily produced by Cr, Ni and As might be increased if effective measures were not taken in future.
文摘The total carbon(C) and total nitrogen(N) content of suspended matter in a small undisturbed headwater drainage basin in the New Territories of Hong Kong has been monitored. Mean C and N contents were 12.85% and 0.99% respectively for 132 samples. Samples collected under stableflow conditions had mean C and N contents of 12.81% and 1.06% respectively. Stormflow samples had mean C and N values of 12.86% and 0.97% respectively, which were very similar to the levels observed under stableflow conditions. The mean C∶N ratios of 12.47 and 13.39 for stableflow and stormflow also reveal little difference according to hydrologic conditions. When all the data is considered little difference is observed in C and N according to the season. However, in winter there is a significant difference in C and N content between stable and stormflow samples. When C and N are plotted against water level the scattergraphs suggested that as stage increases the percentage of C and N in the suspended matter declines. Scattergraphs of C and N against suspended sediment concentration reveal a negative association. Comparison has been made between fresh leaf C, N and C/N ratio for trees and shrubs and the suspended matter. Fresh leaves do not appear to contribute significantly to suspended matter. The C/N ratio of suspended matter would also seem to exclude woody material and algae as sources of suspended matter.
文摘The association of pollutants (nutrients, heavy metals and organic compounds) with colloidal and suspended particle matter(SPM) plays a dominant role in determining their transport, fate, biogeochemistry, bioavailability and toxicity in natural waters. A scheme for the fractionation and composition of colloidal and suspended particulate matter from river waters has been tested. Sieving, continuous flow centrifugation and tangential flow filtration were used to collect gram amounts of colloidal and particulate matters. The separation scheme was able to process large samples(100L), within reasonable times(1 day) and the apparatus was portable. The aquatic colloid was also separated with high resolution, and sized using sedimentation field\|flow fractionation technique. The mass\|based particle size distribution for the river water sample showed a broad size distribution between 0\^05 and 0\^4 μm with the maximum around 0\^14 μm. There was a systematic increase in the content of organic carbon, Mg, Ca, Na, Cu and Zn with decreasing particle size, highlighting the importance of the colloidal(<1 μm) fraction.