期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Optimization of suspension system of off-road vehicle for vehicle performance improvement 被引量:24
1
作者 M. Mahmoodi-Kaleibar I. Javanshir +2 位作者 K. Asadi A. Afkar A. Paykani 《Journal of Central South University》 SCIE EI CAS 2013年第4期902-910,共9页
Vehicle suspension design includes a number of compromises to provide good leveling of stability and ride comfort. Optimization of off-road vehicle suspension system is one of the most effective methods, which could c... Vehicle suspension design includes a number of compromises to provide good leveling of stability and ride comfort. Optimization of off-road vehicle suspension system is one of the most effective methods, which could considerably enhance the vehicle stability and controllability. In this work, a comprehensive optimization of an off-read vehicle suspension system model was carried out using software ADAMS. The geometric parameters of suspension system were optimized using genetic algorithm (GA) in a way that ride comfort, handling and stability of vehicle were improved. The results of optimized suspension system and variations of geometric parameters due to road roughness and different steering angles were presented in ADAMS and the results of optimized and conventional suspension systems during various driving maneuvers were compared. The simulation results indicate that the camber angle variations decrease by the optimized suspension system, resulting in improved handling and ride comfort characteristics. 展开更多
关键词 optimized suspension system STABILITY ride comfort VEHICLE double wishbone suspension system model
下载PDF
Active suspension with optimal control based on a full vehicle model
2
作者 张军伟 陈思忠 赵玉壮 《Journal of Beijing Institute of Technology》 EI CAS 2016年第1期81-90,共10页
The 7-DOF model of a full vehicle with an active suspension is developed in this paper.The model is written into the state equation style.Actuator forces are treated as inputs in the state equations.Based on the basic... The 7-DOF model of a full vehicle with an active suspension is developed in this paper.The model is written into the state equation style.Actuator forces are treated as inputs in the state equations.Based on the basic optimal control theory,the optimal gains for the control system are figured out.So an optimal controller is developed and implemented using Matlab/Simulink,where the Riccati equation with coupling terms is deduced using the Hamilton equation.The all state feedback is chosen for the controller.The gains for all vehicle variables are traded off so that majority of indexes were up to optimal.The active suspension with optimal control is simulated in frequency domain and time domain separately,and compared with a passive suspension.Throughout all the simulation results,the optimal controller developed in this paper works well in the majority of instances.In all,the comfort and ride performance of the vehicle are improved under the active suspension with optimal control. 展开更多
关键词 active suspension full vehicle model optimal control frequencydomain time domain
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部