Homogeneous, high concentrated ceramic suspensions wi th low viscosity are the key controlling factors for the production of ceramic c omponents through colloidal processing. A well-dispersed suspension can be obta in...Homogeneous, high concentrated ceramic suspensions wi th low viscosity are the key controlling factors for the production of ceramic c omponents through colloidal processing. A well-dispersed suspension can be obta ined by choosing suitable dispersant, solvent, particle size distribution etc. B esides these factors, the homogenizing procedure is also a key step. In this paper, reaction sialon suspensions were prepared using 3-wt% KD1 as dis persant in organic media composed of 60-vol% methyletheylketone and 40-vol% et hanol. Different homogenizing procedures have been used and compared, including planetary milling, low energy ball milling and ultrasonic disaggregation. The ef fects of different homogenizing routes and mixing times on the rheology and stab ility of suspensions, and on the microstructure of slip casting green bodies, ha ve been studied. The varying dispersion efficiencies observed could be attribute d to differences in deagglomeration degrees achieved and in adsorption amount of dispersant onto the surface of reaction sialon powders.展开更多
A gel based on polyacrylamide,exhibiting delayed crosslinking characteristics,emerges as the preferred solution for mitigating degradation under conditions of high temperature and extended shear in ultralong wellbores...A gel based on polyacrylamide,exhibiting delayed crosslinking characteristics,emerges as the preferred solution for mitigating degradation under conditions of high temperature and extended shear in ultralong wellbores.High viscosity/viscoelasticity of the fracturing fluid was required to maintain excellent proppant suspension properties before gelling.Taking into account both the cost and the potential damage to reservoirs,polymers with lower concentrations and molecular weights are generally preferred.In this work,the supramolecular action was integrated into the polymer,resulting in significant increases in the viscosity and viscoelasticity of the synthesized supramolecular polymer system.The double network gel,which is formed by the combination of the supramolecular polymer system and a small quantity of Zr-crosslinker,effectively resists temperature while minimizing permeability damage to the reservoir.The results indicate that the supramolecular polymer system with a molecular weight of(268—380)×10^(4)g/mol can achieve the same viscosity and viscoelasticity at 0.4 wt%due to the supramolecular interaction between polymers,compared to the 0.6 wt%traditional polymer(hydrolyzed polyacrylamide,molecular weight of 1078×10^(4)g/mol).The supramolecular polymer system possessed excellent proppant suspension properties with a 0.55 cm/min sedimentation rate at 0.4 wt%,whereas the0.6 wt%traditional polymer had a rate of 0.57 cm/min.In comparison to the traditional gel with a Zrcrosslinker concentration of 0.6 wt%and an elastic modulus of 7.77 Pa,the double network gel with a higher elastic modulus(9.00 Pa)could be formed only at 0.1 wt%Zr-crosslinker,which greatly reduced the amount of residue of the fluid after gel-breaking.The viscosity of the double network gel was66 m Pa s after 2 h shearing,whereas the traditional gel only reached 27 m Pa s.展开更多
文摘Homogeneous, high concentrated ceramic suspensions wi th low viscosity are the key controlling factors for the production of ceramic c omponents through colloidal processing. A well-dispersed suspension can be obta ined by choosing suitable dispersant, solvent, particle size distribution etc. B esides these factors, the homogenizing procedure is also a key step. In this paper, reaction sialon suspensions were prepared using 3-wt% KD1 as dis persant in organic media composed of 60-vol% methyletheylketone and 40-vol% et hanol. Different homogenizing procedures have been used and compared, including planetary milling, low energy ball milling and ultrasonic disaggregation. The ef fects of different homogenizing routes and mixing times on the rheology and stab ility of suspensions, and on the microstructure of slip casting green bodies, ha ve been studied. The varying dispersion efficiencies observed could be attribute d to differences in deagglomeration degrees achieved and in adsorption amount of dispersant onto the surface of reaction sialon powders.
基金financially supported by the National Natural Science Foundation of China(Nos.52120105007 and 52374062)the Innovation Fund Project for Graduate Students of China University of Petroleum(East China)supported by“the Fundamental Research Funds for the Central Universities”(23CX04047A)。
文摘A gel based on polyacrylamide,exhibiting delayed crosslinking characteristics,emerges as the preferred solution for mitigating degradation under conditions of high temperature and extended shear in ultralong wellbores.High viscosity/viscoelasticity of the fracturing fluid was required to maintain excellent proppant suspension properties before gelling.Taking into account both the cost and the potential damage to reservoirs,polymers with lower concentrations and molecular weights are generally preferred.In this work,the supramolecular action was integrated into the polymer,resulting in significant increases in the viscosity and viscoelasticity of the synthesized supramolecular polymer system.The double network gel,which is formed by the combination of the supramolecular polymer system and a small quantity of Zr-crosslinker,effectively resists temperature while minimizing permeability damage to the reservoir.The results indicate that the supramolecular polymer system with a molecular weight of(268—380)×10^(4)g/mol can achieve the same viscosity and viscoelasticity at 0.4 wt%due to the supramolecular interaction between polymers,compared to the 0.6 wt%traditional polymer(hydrolyzed polyacrylamide,molecular weight of 1078×10^(4)g/mol).The supramolecular polymer system possessed excellent proppant suspension properties with a 0.55 cm/min sedimentation rate at 0.4 wt%,whereas the0.6 wt%traditional polymer had a rate of 0.57 cm/min.In comparison to the traditional gel with a Zrcrosslinker concentration of 0.6 wt%and an elastic modulus of 7.77 Pa,the double network gel with a higher elastic modulus(9.00 Pa)could be formed only at 0.1 wt%Zr-crosslinker,which greatly reduced the amount of residue of the fluid after gel-breaking.The viscosity of the double network gel was66 m Pa s after 2 h shearing,whereas the traditional gel only reached 27 m Pa s.